
Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

85

Testing Parallel ystems: First teps

6 Testing Parallel Systems:
First Steps

Testing of systems is crucial and this chapter shows how GroovyTestCase can be used to test processes by

• identifying the process that is to be tested which must terminate
• creating support processes that terminate
• constructing the assertions that can be tested, using properties from the support processes

JUnit (JUnit, 2013) testing has become a widely accepted way of testing Java classes and there is a great
deal of software support for this approach. In previous chapters, examples and exercises were introduced
whereby the user had to ascertain for them self that the systems worked in the expected manner. This
was achieved by looking at displayed output. This may be a satisfactory approach for small example
systems but is not appropriate for systems that are to be used in an everyday context.

In this chapter the use of JUnit testing is introduced by using examples taken from earlier chapters.
This will demonstrate that it is possible to use this approach and give a general architecture for testing
parallel systems. The key to JUnit testing is that we test one or more assertions concerning the underlying
implementation. In the parallel situation we have to identify a source of inputs that can be compared to
the subsequent outputs for the assertion testing.

6.1 Testing Hello World

The testing of the ProduceHW and ConsumeHello processes (see Chapter 2) demonstrate that from
the outset testing has to be considered at the time processes are designed and cannot be retrospectively
added. To this end, properties are required that can be accessed once a process has terminated. These
properties can then become components in any assertion. In this very simple case the ProduceHW
process needs no alteration.

6.1.1 Revised ConsumeHelloForTest Process

The revised version of ConsumeHelloForTest, see Listing 6-1 requires the addition of a property
message {13}, which is assigned {18} the values that have been read in from inChannel {16, 17}.

10 class ConsumeHelloForTest implements CSProcess {
11
12 def ChannelInput inChannel
13 def message
14

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

86

Testing Parallel ystems: First teps

15 void run() {
16 def first = inChannel.read()
17 def second = inChannel.read()
18 message = "${first} ${second}!!!"
19 println message
20 }
21 }

Listing 6-1 The Revised Version of ConsumeHW

6.1.2 The HelloWorldTest Script

Listing 6-2 gives the script used to test ProduceHW and ConsumerHW.

The ProduceHW process from Chapter 2 is imported {10} into the testcase and thus provides a means of
testing that process. The remainder of the coding is that required to build an instance of GroovyTestCase.
This is the Groovy way of building JUnit tests. This requires the definition of a void method {14}, the
name of which is prefixed with the word test that contains the script necessary to run the processes
being tested. The primary requirement is that each of the processes must terminate. In many systems
this is not feasible as the processes run in a loop that does not terminate. In Chapter 17 we shall see
how to test such non-terminating process networks.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

87

Testing Parallel ystems: First teps

10 import c02.ProduceHW
11
12 class HelloWorldTest extends GroovyTestCase {
13
14 void testMessage() {
15 def connect = Channel.one2one()
16 def producer = new ProduceHW (outChannel: connect.out()
)
17 def consumer = new ConsumeHelloForTest (inChannel:

connect.in())
18
19 def processList = [producer, consumer]
20 new PAR (processList).run()
21 def expected = "Hello World!!!"
22 def actual = consumer.message
23 assertTrue(expected == actual)
24 }
25 }

Listing 6-2 The HelloWorldTest Script

The crucial elements are that we define each process as an instance {16, 17}. This is required so that
we can access the message property of ConsumeHelloForTest when the system terminates. The
processes are then run in parallel {19, 20}. The property expected is set to the String that should be
output {21}. The actual value is obtained from the message property of ConsumeHelloForTest
{22}. These are then compared {23} using the assertTrue method which produces an indication of
whether the test passed.

6.2 Testing the Queue Process

The Queue Process discussed in Chapter 5.2 can be tested by sending a known number of test values
into the Queue from the QProducer process and then ensuring that the same values are received
by the QConsumer process. Listing 6-3 shows the modified QProducerFortest process. The only
modifications required occur on {15}, where a new List property is added called sequence, which holds
the sequence of produced values and on {23} where each produced value is appended (<<) to sequence.
The printing of the produced values also has been removed. The sequence property is required to
ensure we have a value that can be tested once the network of processes being tested has terminated.

10 class QProducerForTest implements CSProcess {
11
12 def ChannelOutput put
13 def int iterations = 100
14 def delay = 0
15 def sequence = []
16

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

88

Testing Parallel ystems: First teps

17 void run () {
18 def timer = new CSTimer()
19
20 for (i in 1 .. iterations) {
21 put.write(i)
22 timer.sleep (delay)
23 sequence = sequence << i
24 }
25 put.write(null)
26 }
27 }

Listing 6-3 The Testable Version of QProducer Called QProducerForTest

Listing 6-4 shows the modified QConsumerForTest process, which as in the QProducerFortest
defines a property that can be externally accessed, called outSequence {15}. The processing of
the terminating null value has been modified {25} so that all the received values are appended to
outSequence unless it is the null value, in which case the value of running is set false, causing
the process to terminate.

10 class QConsumerForTest implements CSProcess {
11
12 def ChannelOutput get
13 def ChannelInput receive
14 def long delay = 0
15 def outSequence = []
16
17 void run () {
18 def timer = new CSTimer()
19 def running = true
20
21 while (running) {
22 get.write(1)
23 def v = receive.read()
24 timer.sleep (delay)
25 if (v != null) outSequence = outSequence << v
26 else running = false
27 }
28 }
29 }

Listing 6-4 The Modified QConsumerForTest Process

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

89

Testing Parallel ystems: First teps

6.3 The Queue Test Script

Listing 6-5 gives the GroovyTestcase class that causes Queue process testing. It takes the same basic
structure as that used in the test of the Hello World system. It is important to note that the aim is to test the
Queue process given in Chapter 5 and not the QProducer and QConsumer processes. The Queue process
is imported {10}. The channels required to implement the network defined in Figure 5-2 are specified
{14–16}. Instances of each of the processes are then defined {18–22}, so that we can subsequently test
the values of the properties sequence and outSequence of QProducer and QConsumer respectively.
The list of processes is then defined and executed in a PAR {23–24}, which must terminate if we are to
be able to test the process properties in an assertion {28}.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

90

Testing Parallel ystems: First teps

10 import c05.Queue
11 class QueueTest extends GroovyTestCase {
12
13 void testQueue() {
14 def QP2Q = Channel.one2one()
15 def Q2QC = Channel.one2one()
16 def QC2Q = Channel.one2one()
17
18 def qProducer = new QProducerForTest (put: QP2Q.out(), iterations: 50)
19 def queue = new Queue (put: QP2Q.in(), get: QC2Q.in(),
20 receive: Q2QC.out(), elements: 5)
21 def qConsumer = new QConsumerForTest (get: QC2Q.out(),
22 receive: Q2QC.in())
23 def testList = [qProducer, queue, qConsumer]
24 new PAR (testList).run()
25
26 def expected = qProducer.sequence
27 def actual = qConsumer.outSequence
28 assertTrue(expected == actual)
29 }
30 }

Listing 6-5 The QueueTest Script

The values of the expected and actual returned values are obtained from their processes and tested
{26–28}. In more complex examples the construction of assertions is likely to be more elaborate depending
upon the nature of the data being input and generated.

6.4 Summary

In this chapter we have introduced the concept of testing parallel systems, using the JUnit testing
framework within a Groovy environment. The key requirement is that the network of processes must
terminate. Further, the processes used to test the operation of the process network under test must
contain properties that can be populated with data that can then be tested in one or more assertions. In
Chapter 17 we reflect further on the testing of parallel systems and show how we can test systems that
are designed not to terminate.

6.5 Exercises

Exercise 6-1

Construct a Test Case for the Three-To-Eight system constructed in the exercise for Chapter 2.

http://bookboon.com/

