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Appendix A

Solutions of Selected Exercises

A.1 Chapter 1 Exercises

All Prolog source code for Chap. 1 is available in the file accumulator.pl.

Exercise 1.1. Define from to/3 and its auxiliary from to acc/3 by (P-A.1).

Prolog Code P-A.1: Definition of from to/3

1 from_to(M,N,L) :- (var(L); is_list(L)), % clause 0

2 integer(M), %

3 integer(N), %

4 M =< N, %

5 from_to_acc(M,[N],L), !. %

6 from_to(H,N,[H|T]) :- last(N,[H|T]), !, % clause 1

7 H =< N. %

8 from_to_acc(H,[H|T],[H|T]). % clause 2

9 from_to_acc(M,[H|T],L) :- NewHead is H - 1, !, % clause 3

10 from_to_acc(M,[NewHead,H|T],L). %

The annotated version of the hand computations from Fig. 1.4 is shown in Fig. A.1. The idea suggested by

from to(6,9,L)
0©

�� from to acc(6,[9],L)
3©

��

from to acc(6,[8,9],L)
3©

�� from to acc(6,[7,8,9],L)
3©

��

from to acc(6,[6,7,8,9],L)
2©

�� L = [6,7,8,9]
0©

�� success

Figure A.1: Annotated Hand Computations for from to/3
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the hand computations is clearly reflected in the clauses 0, 2 and 3. It is instructive to consider the unexpected
consequences of a slight (and perhaps innocent looking) change to clause 0. If we redefine clause 0 as shown
here,

from_to(M,N,L) :- var(L), % new clause 0

integer(M), %

integer(N), %

M =< N, %

from_to_acc(M,[N],L), !. %

then the predicate’s pattern matching functionality will be corrupted:

?- from to(6,9,[ , ,E| ]).

E = 9

(The third entry of the list [6,7,8,9] is clearly not 9 .) To explain this, we note that Prolog first tries the
modified clause 0 which will fail since [ , ,E| ] is not a variable but a compound term.1

?- var([ , ,E| ]).

No

1Lists are compound terms with the functor ‘. ’ (dot). More on this will be found in Sect. 2.2.1.
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Next, clause 1 is tried, which then succeeds as indicated by the query below.

?- (6,9,[ , ,E| ]) = (H,N,[H|T]), last(N,[H|T]), !, H =< N.

E = 9

H = 6

N = 9

T = [ G269, 9]

Why? Well, for the first goal of this query to succeed, [H|T] has to have at least three entries, requiring T be
of length at least two. The second goal then succeeds with T as a two-element list (whose first entry is a system
chosen internal variable):

?- last(9,[6|T]). 2

T = [9] ;

T = [ G269, 9] ;

T = [ G269, G272, 9] ;

...

Therefore, [H|T] will be unified with [6, G269,9] . Now, the unification [ , ,E| ] = [H|T] (still in force
from the first goal) requires that E be unified with the third entry of [6, G269,9] , i.e. with 9 .

We note in passing that the predicate numlist/3 in SWI-Prolog, Version 5.2.7, has almost the same function-
ality as our from to/3 . (The instantiation pattern numlist(-Low,-High,+List) has not been implemented
there.)

Exercise 1.2. The new version, nums/2 , is defined in (P-A.2).

Prolog Code P-A.2: Definition of nums/2

1 nums(Atom,N) :- atom_codes(Atom,Values), % clause 0

2 nums([47|Values],0,N), !. %

3 nums([],N,N). % clause 1

4 nums([_],N,N). % clause 2

5 nums([H,E|T],Acc,N) :- not(digit(H)), digit(E), % clause 3

6 NewAcc is Acc + 1, %

7 !, nums([E|T],NewAcc,N). %

8 nums([_,E|T],Acc,N) :- nums([E|T],Acc,N). % clause 4

• We prefix in clause 0 with the ASCII Values with ‘47’, an arbitrary non-digit code, in case the leftmost
character was a digit. (Otherwise, the first group of digits will be missed.)

• The first two goals of clause 3 provide the condition for incrementing the accumulator.

Exercise 1.3. The pseudocode is shown as Algorithm A.1.1; the correspondence between the pseudocode’s
statements and the Prolog clauses in Example 1.6 is displayed in Table A.1.

2We are using SWI-Prolog, Version 3.4.5 here. In the latest version also available at the time of writing (Version 5.2.7), for some in-
explicable reason the order of the arguments of last/2 is the other way round.
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Algorithm A.1.1: Numbers(Atom)

V alues ← list of ASCII values of characters in Atom (1)
Acc ← 0 (2)
Switch ← nodigit (3)
while V alues �= []

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[H |T ] ← V alues (4)
if H is an encoded digit

then

⎧⎨
⎩

if Switch = nodigit (5)
then

{
Acc ← Acc + 1 (6)

Switch ← digit (7)
else

{
Switch ← nodigit (8)

V alues ← T (9)
N ← Acc (10)
return (N)

Statement (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Clause 0 0 0 2, 3, 4 2 2 2, 3 4 2, 3, 4 1

Table A.1: Algorithm A.1.1 & Prolog Clause Correspondence (Example 1.6)

Exercise 1.4. A simple tail recursive definition for mult/3 is by (P-A.3).

Prolog Code P-A.3: Definition of mult/3 by recursion

1 mult(_,[],[]).

2 mult(C,[H|T],[P|Ps]) :- P is C * H, !,

3 mult(C,T,Ps).

An alternative definition using accumulators is suggested by the hand computations in Fig. A.2, giving rise
to (P-A.4).

mult(0.2,[5.0,10.5,2.5],L)
0©

�� mult(0.2,[5.0,10.5,2.5],[],L)
2©

��

mult(0.2,[10.5,2.5],[1.0],L)
2©

�� mult(0.2,[2.5],[2.1,1.0],L)
2©

��

mult(0.2,[],[0.5,2.1,1.0],L)
1©

�� reverse([0.5,2.1,1.0],L) ��

L = [1.0,2.1,0.5]
0©

�� success

Figure A.2: Hand Computations for mult/3
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Prolog Code P-A.4: mult/3 by the accumulator technique

1 mult(C,List,L) :- mult(C,List,[],L). % clause 0

2 mult(_,[],Acc,L) :- reverse(Acc,L). % clause 1

3 mult(C,[H|T],Acc,L) :- A is C * H, !, % clause 2

4 mult(C,T,[A|Acc],L).

Timing by time/1 will show that simple recursion delivers a better performance. mult/3 is an example of
a mapping operation where each entry of the input list is mapped by some function to the corresponding entry
of the output list. (add/3 is defined analogously.)

Exercise 1.5. Replace clause 1 in (P-1.13), p. 30, (the definition of pta/2 ) by the following two clauses.

pta(in(_,_,_,Ws,Acc),out(Ws,I)) :- integer(I),

Acc =:= I, !.

pta(in(_,Ps,Ds,Ws,Acc),out(Ws,I)) :- var(I),

classify_all(Ps,Ws,Ds),

I = Acc, !.

If a fixed number of iterations I is wanted, the stopping criterion requires that the accumulator be numerically
equal to I . The alternative stopping criterion is, as before, that all points be correctly classified.

A.2 Chapter 2 Exercises

All Prolog source code for Chap. 2 is available in the file dl.pl.

Exercise 2.1. sharp/2 is defined by recursion in (P-A.5).

Prolog Code P-A.5: Definition of sharp/2

1 sharp(E,E) :- not(proper_list(E)), !.

2 sharp([],[]).

3 sharp([E],#(Term,[])) :- sharp(E,Term), !.

4 sharp([H|T],#(Term1,Term2)) :- sharp(H,Term1),

5 sharp(T,Term2).

Perhaps the order of the two boundary case clauses should be given some thought. As it stands, the sharp-
notation of a list with a single entry of a free variable is correctly evaluated:

?- sharp([E],S).

E = _G210

S = #(_G210, []) ;

No

However, on interchanging the first two clauses in (P-A.5), we get an incorrect response:

?- sharp([E],S).

E = []

S = #([], []) ;

No
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Exercise 2.2. lf/2 is defined in (P-A.6).

Prolog Code P-A.6: Definition of lf/2

1 lf(Term,Term) :- var(Term), !. % clause 1

2 lf(#(Term,_),Term) :- not(functor(Term,#,2)), % clause 2

3 Term \= []. %

4 lf(#(Term,_),Leaf) :- lf(Term,Leaf). % clause 3

5 lf(#(_,Term),Leaf) :- lf(Term,Leaf). % clause 4

(P-A.6) admits the following declarative reading:

• Clause 1: Variables are leaves.

 

  

 

                . 

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c


Download free eBooks at bookboon.com

Prolog Techniques

 
147 

Appendix A: Solutions of Selected Exercises

• Clause 2: Term is the left-hand leaf of #(Term, ) if Term is not a list3 of length at least 1 nor is Term the
empty list. (Notice that in a more precise interpretation of clause 2, the phrase ‘is not’ should be replaced
by ‘cannot be unified with’. However, this change in interpretation makes a real difference only if lf/2 is
invoked with an unbound variable in its first argument, a case which will have been caught by clause 1.)4

• Clause 3: Leaf is a left-hand leaf of #(Term, ) if Leaf is a left-hand leaf of its (left-hand) branch Term .

• Clause 4: Leaf is a left-hand leaf of #( ,Term) if Leaf is a left-hand leaf of its (right-hand) branch Term .

Exercise 2.3. The definition of a first version of flatten/2 is is shown in (P-A.7).

Prolog Code P-A.7: A first version of flatten/2

1 flatten_1(L,F) :- sharp(L,S), bagof(Leaf,lf(S,Leaf),F).

The discussion on p. 46 shows that the use of the dot-notation for displaying lists can be achieved by the
predicate set prolog flag/2 . Close scrutiny of the Exercises 2.1 to 2.3 (and their solutions) will in fact reveal
that we can implement flatten/2 also directly, i.e. without recourse to our sharp-notation; such a version is
defined in (P-A.8).

Prolog Code P-A.8: A second version of flatten/2

1 leaf(Term,Term) :- var(Term), !.

2 leaf(.(Term,_),Term) :- not(functor(Term,.,2)),

3 Term \= [].

4 leaf(.(Term,_),Leaf) :- leaf(Term,Leaf).

5 leaf(.(_,Term),Leaf) :- leaf(Term,Leaf).

6 flatten_2(L,F) :- bagof(Leaf,leaf(L,Leaf),F).

The above two versions of flatten/2 behave identically to the built-in one; for example,

?- flatten_1([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)]

?- flatten_2([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)]

?- flatten([a,[Y,[b,X]],c,f(X)],L).

Y = _G330

X = _G336

L = [a, _G330, b, _G336, c, f(_G336)]

3‘Lists’ are understood here to be in terms of the sharp-notation.
4In the absence of clause 1, however, a query like lf(#(X,[]),Leaf). will cause stack overflow since clause 2 will fail and

clause 3 will cause looping as can be inferred from

?- #(Term, ) = X.

Term = G219

X = #( G219, G220)
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It is seen in particular that a free variable occurring more than once in the nested list will be unified, as
expected, with the same internal variable. This would not have been so, however, had we used the built-in
predicate findall/3 (in lieu of bagof/3 ) for collecting the leaves from the list’s tree representation:

?- findall(Leaf,leaf([a,[Y,[b,X]],c,f(X)],Leaf),Leaves).

Leaf = _G480

Y = _G456

X = _G462

Leaves = [a, _G641, b, _G629, c, f(_G617)]

Exercise 2.4. The definition of dot/1 in (P-A.9) follows the suggested route.

Prolog Code P-A.9: Definition of dot/1

1 dot(List) :- sharp(List,Term),

2 term_to_atom(Term,A1),

3 atom_chars(A1,L1),

4 sharps_to_dots(L1,L2),

5 concat_atom(L2,A2),

6 write_term(A2,[]).

The predicate sharps to dots/2 is defined by the accumulator technique in (P-A.10).

Prolog Code P-A.10: Definition of sharps to dots/2

1 sharps_to_dots(S,D) :- sharps_to_dots(S,[],R),

2 reverse(R,D), !.

3 sharps_to_dots([],L,L).

4 sharps_to_dots([#|T],Acc,L) :- sharps_to_dots(T,[.|Acc],L).

5 sharps_to_dots([H|T],Acc,L) :- sharps_to_dots(T,[H|Acc],L).

A more concise alternative is offered by the use of the built-in maplist/3 ; this is shown in (P-A.11).

Prolog Code P-A.11: Alternative definition of sharps to dots/2

1 sharps_to_dots(S,D) :- maplist(sharp_to_dot,S,D).

2 sharp_to_dot(#,’.’) :- !.

3 sharp_to_dot(C,C).

Exercise 2.5. The improved version is defined in (P-A.12).

Prolog Code P-A.12: Definition of flatten 4/2

1 flatten_4(X,[X]) :- var(X), !. % clause 0

2 flatten_4([],[]). % clause 1

3 flatten_4([H|T],L1) :- flatten_4(H,L2), % clause 2

4 flatten_4(T,L3), %

5 append(L2,L3,L1), !. % cut added here

6 flatten_4(X,[X]). % clause 3
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Clauses 1 to 3 are essentially as in flatten 3/2 . (The cut in clause 2 has been added to achieve a unique
solution.) To rectify the other problem with flatten 3/2 , we have to understand why it produces spurious
solutions on backtracking. When flatten 3/2 arrives at a list entry which is a variable, it will first unify
the variable with the empty list and then on further backtracking with [H|T] where H and T are themselves
variables. Because of the recursive definition, this will then give rise to further such erroneous unifications.
To avoid this, we simply ‘catch’ a variable first argument by clause 0. flatten 4/2 thus defined behaves as
expected:

?- flatten 4([a,[Y,[b,X]],c,f(X)],L).

Y = _G339

X = _G345

L = [a, _G339, b, _G345, c, f(_G345)] ;

No

Exercise 2.6. The following additional clause (an analogue of clause 0 in the definition of flatten 4/2 ) will
become the first clause in flatten dl/2 :

flatten_dl(X,[X|T]-T) :- var(X), !.

Exercise 2.7. We define in (P-A.13) nested/2 in terms nested/4 whose second and third argument are a
counter and an accumulator, respectively.

Prolog Code P-A.13: Definition of nested/2

1 nested(M,L) :- nested(M,1,[1],L), !.

2 nested(M,M,L,L).

3 nested(M,N,Acc,L) :- NewN is N + 1,

4 nested(M,NewN,[Acc,NewN],L).

The versions’ relative performance is illustrated below. It is seen in particular that the one based on difference
lists is nearly as good as the built-in version.

?- nested(8000, L), time(flatten( L, F)).

% 95,999 inferences in 0.44 seconds (218180 Lips)

?- nested(8000, L), time(flatten 1( L, F)).

% 216,004 inferences in 12.96 seconds (16667 Lips)

?- nested(8000, L), time(flatten 2( L, F)).

% 144,007 inferences in 12.79 seconds (11259 Lips)

?- nested(8000, L), time(flatten 3( L, F)).

% 335,514 inferences in 9.88 seconds (33959 Lips)

ERROR: Out of global stack

?- nested(8000, L), time(flatten 5( L, F)).

% 32,000 inferences in 0.93 seconds (34409 Lips)

Furthermore, it is seen that version 3, the implementation using list concatenation with append/3 , is not prac-
tically viable due to stack overflow. (This problem has been experienced even for a nesting depth of 1000.)

Exercise 2.8. Your session will typically look like this:
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?- findall(_N,between(1,2000,_N),_L), time(reverse_1(_L,_R)).

% 2,003,001 inferences in 19.34 seconds (103568 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_2(_L,_R)).

% 2,002 inferences in 0.00 seconds (Infinite Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_3(_L,_R)).

% 4,000 inferences in 0.06 seconds (66667 Lips)

?- findall(_N,between(1,2000,_N),_L), time(reverse_4(_L,_R)).

% 2,002 inferences in 0.05 seconds (40040 Lips)

It is seen that the ‘näıve’ implementation is far less efficient than either of the other three. Furthermore, version 4
is seen to behave in the same way as the one using accumulators (which is the method used also to implement the
built-in version). This is not surprising since these two implementations were shown to be identical in Sect. 2.3.2.

Exercise 2.9.
Declarative Reading.

The difference list L-X is the reverse of the list [E1,E2|T] if the difference list L-[E2,E1|X] is the
reverse of T .

New Version. This is defined in (P-A.14).
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Prolog Code P-A.14: Definition of reverse 5/2

1 reverse_5(L,R) :- rev_dl_3(L,R-[]).

2 rev_dl_3([],L-L). % clause 0

3 rev_dl_3([X],[X|L]-L). % clause 1

4 rev_dl_3([E1,E2|T],L1-L2) :- rev_dl_3(T,L1-[E2,E1|L2]). % clause 2

Noteworthy is in (P-A.14) the fact that reversal is carried out in ‘chunks of twos’ resulting in fewer invocations
of the auxiliary predicate. There are now two boundary clauses: if the list to be reversed has an even number
of entries then clause 0 is used; otherwise, clause 1 applies.

Unfolding. We are going to show here that the clauses 0–2 can be inferred from the clauses (b1)–(b2).5

The boundary clause 0 is identical to clause (b1).

We infer clause 1 by an elementary unfolding operation on the only goal in clause (b2): we first rewrite clause (b1)
as

rev_dl([],L-L) :- true.

and then seek to unify its head with the goal in the body of clause (b2):

?- rev_dl([],L-L) = rev_dl(T,L1-[H|L2]).

L = [_G360|_G361]

T = []

L1 = [_G360|_G361]

H = _G360

L2 = _G361

Yes

The unification succeeds and gives rise to the clause

rev_dl([_G360|[]],[_G360|_G361]-_G361) :- true.

which is equivalent to clause 1.

To infer now clause 2, we rewrite clause (b2) as

rev_dl([U|V],W1-W2) :- rev_dl(V,W1-[U|W2]).

and seek to unify the head of this new clause with the goal in clause (b2):6

?- rev_dl([U|V],W1-W2) = rev_dl(T,L1-[H|L2]).

U = _G384

V = _G385

W1 = _G387

W2 = [_G393|_G394]

T = [_G384|_G385]

5For the present purposes, the version number (i.e. the suffix ‘ 3 ’) is to be ignored.
6This is an instance of self unfolding.
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L1 = _G387

H = _G393

L2 = _G394

Yes

The unification succeeds and gives rise to

rev_dl([H|T],L1-L2) :- rev_dl(V,W1-[U|W2]).

which in terms of Prolog’s internal variable names reads as follows.

rev_dl([_G393|[_G384|_G385]],_G387-_G394) :-

rev_dl(_G385,_G387-[_G384|[_G393|_G394]]).

The latter clause is readily recognized as clause 2. This second and final elementary unfolding operation con-
cludes a complete one step unfolding, thus making clause (b2) redundant.

Speed of Execution. The enhanced version is twice as fast as the previous one:

?- findall(_N,between(1,100000,_N),_L), time(reverse_5(_L,_R)).

% 50,002 inferences in 0.61 seconds (81970 Lips)

?- findall(_N,between(1,100000,_N),_L), time(reverse_4(_L,_R)).

% 100,002 inferences in 1.92 seconds (52084 Lips)

Further Enhancement. Modify the implementation by processing the input list in chunks of threes; this is
shown in (P-A.15).

Prolog Code P-A.15: Definition of reverse 6/2

1 reverse_6(L,R) :- rev_dl_4(L,R-[]).

2 rev_dl_4([],L-L).

3 rev_dl_4([E1],[E1|L]-L).

4 rev_dl_4([E1,E2],[E2,E1|L]-L).

5 rev_dl_4([E1,E2,E3|T],L1-L2) :- rev_dl_4(T,L1-[E3,E2,E1|L2]).

It is seen that three base cases are needed now, defining explicitly the reversal of lists with up to two entries.
The gain in speed is illustrated by the query below.

?- findall(_N,between(1,100000,_N),_L), time(reverse_6(_L,_R)).

% 33,335 inferences in 0.50 seconds (66670 Lips)

Generalization. Provide n base cases catering for the reversal of lists with up to n − 1 entries and write a
recursive clause for reversing lists with at least n entries.

Exercise 2.10, part (a). We convert colour/4 to its difference lists based form by (P-A.16).
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Prolog Code P-A.16: Definition of colour dl/4

1 colour_dl([],R-R,W-W,B-B).

2 colour_dl([col(Object,red)|T],

3 [col(Object,red)|R1]-R2,W1-W2,B1-B2) :-

4 colour_dl(T,R1-R2,W1-W2,B1-B2).

5 colour_dl([col(Object,white)|T],

6 R1-R2,[col(Object,white)|W1]-W2,B1-B2) :-

7 colour_dl(T,R1-R2,W1-W2,B1-B2).

8 colour_dl([col(Object,blue)|T],

9 R1-R2,W1-W2,[col(Object,blue)|B1]-B2) :-

10 colour_dl(T,R1-R2,W1-W2,B1-B2).

The concatenation of the three output difference lists is accomplished by

dijkstra_dl(Items,L1-L4) :- colour_dl(Items,L1-L2,L2-L3,L3-L4).

dijkstra/2 is now defined as in Sect. 2.4.3,

dijkstra(Items,Grouped) :- dijkstra_dl(Items,Grouped-[]).

Timing by time/1 will confirm that the difference list based version of each implementation is better (as mea-
sured by the number of inferences used) than its plain counterpart. The last version is the best as it uses
difference lists and takes a single pass through the input list.

Exercise 2.10, part (b). Add the clauses

colour([col(_,Colour)|T],R,W,B) :- Colour \= red,

Colour \= white,

Colour \= blue,

colour(T,R,W,B).

and

colour_dl([col(_,Colour)|T],R1-R2,W1-W2,B1-B2) :-

Colour \= red,

Colour \= white,

Colour \= blue,

colour_dl(T,R1-R2,W1-W2,B1-B2).

to the respective existing definitions.

Exercise 2.11. Carry out a clause-by-clause ‘translation’ of averages/2 and allied predicates to get (P-A.17).

Prolog Code P-A.17: Definition of averages dl/2

1 averages_dl(L1-L2,A1-A2) :- aver_dl([-1,1|L1]-L2,A1-A2), !.

2 aver_dl([_,0,_|X]-Y,X-Y).

3 aver_dl(X1-X2,ADL) :- av_rotate_dl(X1-X2,Y1-Y2),

4 aver_dl(Y1-Y2,ADL).

5 av_rotate_dl([H1,H2|Y]-[Last|Z],[H2|Y]-Z) :- Last is (H1 + H2)/2.

http://bookboon.com/


Download free eBooks at bookboon.com

Click on the ad to read more

Prolog Techniques

 
154 

Appendix A: Solutions of Selected Exercises

L1︷ ︸︸ ︷
[H|L1]︷ ︸︸ ︷

︸ ︷︷ ︸
L2

︸ ︷︷ ︸
[H|T]

H T

Figure A.3: Illustrating the Second Clause of dl/2

Exercise 2.12. Clause 2 in (P-2.19) is illustrated by Fig. A.3. It admits the following declarative interpretation:

The difference list version of [H|T] is [H|L1]-L2 if the difference list version of T is L1-L2 .

Exercises 2.13 & 2.14. The first implementation is by (P-A.18).
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Prolog Code P-A.18: Definition of show matrix dl/1

1 show_matrix_dl(M-[]):- show_matrix(M), nl. % clause 0

2 show_matrix([]). % clause 1

3 show_matrix([H-[]|T]) :- write(H), write(’ ’), % clause 2

4 show_matrix(T). %

In clause 0, the argument of show matrix dl (which expects a difference list of difference lists) is converted to
a proper list of difference lists. This then is diplayed entry-wise by show matrix/1 , defined in the clauses 1 and
2. Noteworthy is clause 2 where the matrix head is unified with H-[] thereby making H a proper list which in
turn is displayed on the terminal.

Invoking show matrix dl(M1-M2) with a difference list M1-M2 will of course unify M2 with the empty list.
This can’t be ‘undone’ later and therefore any subsequent attempt of using M1-M2 as a genuine difference list
will fail. We solve this problem by not displaying the original difference list M1-M2 but a copy of it which we
write to the database prior to the invokation of show matrix dl/2 . The improved version show matrix dl2/2

is defined in (P-A.19).

Prolog Code P-A.19: Definition of show matrix dl2/1

1 show_matrix_dl2(DLM):- dynamic(matrix/1),

2 retractall(matrix(_)),

3 assert(matrix(DLM)),

4 matrix(M),

5 show_matrix_dl(M).

It will behave as expected:

?- matrix a( A), dl2( A, DLA), show matrix dl2( DLA),

rot matrix dl( DLA, DLR), show matrix dl2( DLR).

[a11, a12, a13, a14] [a21, a22, a23, a24] [a31, a32, a33, a34]

[a22, a23, a24, a21] [a32, a33, a34, a31] [a12, a13, a14, a11]

You will find more on database operations in Sect. 3.1.
In the above approach, a copy of the term holding the matrix in difference list form was written to and later

retrieved from the database. Subsequently, the new copy (or parts of it) may be unified with some other term
without affecting the original. There is a built-in predicate to achieve just that; it is copy term/2 (see inset).

Built-in Predicate: copy term(+TermIn,-TermOut)

The term in TermIn is copied to TermOut . Each of the free variables in TermIn

is given a new (internal) name and subsequently no link is maintained between
the two terms. Example:

?- copy term(f(a,X),Y), X = b.

X = b

Y = f(a, G386)

Yes
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A new version of show matrix dl/1 is defined in (P-A.20).

Prolog Code P-A.20: Definition of show matrix dl3/1

1 show_matrix_dl3(DLM):- copy_term(DLM,M),

2 show_matrix_dl(M).

It will be found to respond exactly as show matrix dl2/1 did.

Exercise 2.15. Add to the database the clause

g_seidel(in([[First|Rest1]-Rest2|A1]-A2,

[B|B1]-[B|B2],[_|T1]-[NewX|T2],[S|S1]-[S|S2]),

out(NewAs,B1-B2,T1-T2,S1-S2)) :-

dot_product_dl(Rest1-Rest2,T1-[NewX|T2],P),7

NewX is B - P,

rot_matrix_dl([[First|Rest1]-Rest2|A1]-A2,NewAs).

to enable g seidel/2 to work also with difference lists. (Notice that this new clause won’t interfere with the
earlier definition.) No other changes are necessary since g seidel/7 will call this modified version of g seidel/2
as before:

?- a(A), b(B), x0(X), s(S),

dl2(A,ADL), dl(B,BDL), dl(X,XDL), dl(S,SDL),

g_seidel(ADL,BDL,XDL,SDL,50,NewX-[],NewS-[]).

...

NewX = [62.5, 62.5, 87.5, 87.5]

NewS = [3, 4, 1, 2]

To simplify the query, we may use the new version of g seidel/7 , defined in (P-A.21).

Prolog Code P-A.21: New version of g seidel/7

1 g_seidel_2(A,B,X,S,I,NewX,NewS) :-

2 dl2(A,ADL),

3 dl(B,BDL),

4 dl(X,XDL),

5 dl(S,SDL),

6 g_seidel(ADL,BDL,XDL,SDL,I,NewX-[],NewS-[]), !.

(This version uses the same pattern of proper list inputs as g seidel/7 but works internally with difference
lists.)

7The dot product of vectors in difference list notation is defined by the accumulator technique as follows

dot_product_dl(DL1,DL2,Result) :- dot_product_dl(DL1,DL2,0,Result), !.

dot_product_dl(L-_,_,Acc,Acc) :- var(L).

dot_product_dl([HU|TU1]-TU2,[HV|TV1]-TV2,Acc,Result) :-

NewAcc is Acc + HU * HV, !,

dot_product_dl(TU1-TU2,TV1-TV2,NewAcc,Result).
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Experiments will show that the new implementation always needs a lesser number of inferences. However,
for the CPU–time also to show a relative improvement, the problem has to be of a minimum size. (Difference
lists carry a certain computational overhead worth paying for problems beyond a certain size only.)

A.3 Chapter 3 Exercises

Prolog source code: for Sect. 3.1, see party.pl, people.pl, arrange.pl and queue.pl; for Sect. 3.2, see
transformations.pl; for Sect. 3.3, see dl.pl and transformations.pl.

Exercise 3.1, part (f). facing/3 is recursively defined by

facing(X,L,R) :-

right_to(L,X), right_to(X,R), (L == R, !; true).

facing(X,L,R) :-

facing(X,Y,Z), right_to(L,Y), right_to(Z,R), (L == R, !; true).

The declarative reading of this definition should be straightforward in conjunction with Fig. 3.2. Recursion
stops when the last two arguments of facing/3 are instantiated to identical terms. For an odd number of
guests, facing/3 will stop once the second and third arguments are identical to the first:

?- listing(right to/2).

right to(clara, adam).

right to(adam, susan).

right to(susan, clara).

?- facing(adam,Left,Righ).

Left = clara Righ = susan ;

Left = susan Righ = clara ;

Left = adam Righ = adam ;

No

Define now opposite to/2 by

opposite_to(X,Y) :- facing(X,Y,Y), X \== Y.

(The second goal ensures failure for an odd number of guests.)

Exercise 3.2. (P-A.22) shows the definition of opposites/0 ; guests/0 is defined analogously.

Prolog Code P-A.22: Definition of opposites/0

1 opposites :- opposite_to(_,_),

2 ((right_to(X,Y),

3 opposite_to(X,Z),

4 write(X), write(’, ’), write(Z), nl,

5 fail); true).

Observations. opposites/0 will succeed iff opposites to/2 does, i.e. if there are an even number of names
in the database. From inside a failure driven loop all opposite pairs are displayed and success is enforced by
disjunction with ‘true ’.
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(P-A.23) defines look right/1 in terms of an auxiliary predicate look right/2 . In the second argument
of this predicate the list of names is accumulated until the person’s name reappears in the head.

Prolog Code P-A.23: Definition of look right/1

1 look_right(Pers) :- look_right(Pers,[Pers|T]),

2 reverse(T,List),

3 write_list(List).

4 look_right(Pers,[X,Pers]) :- right_to(Pers,X).

5 look_right(Pers,[X,H|T]) :- right_to(H,X),

6 look_right(Pers,[H|T]).

write list/1 is defined by recursion (not shown here) and displays the entries of a list in a single line.

Exercise 3.3, part (a). Don’t change the database if one or two people are at the table:

swap_neighbours(Pers1,Pers2) :- right_to(Pers1,Pers2),

right_to(Pers2,Pers1).

Changes are due if more than two people are at the table:


















































