
(sched-k (Tdone)))))

(set! yielder

(lambda ()

(let/cc thread-k

(begin

(set! thread-resumer thread-k)

(sched-k (Tsuspended))))))

(thread-resumer 'tres))))]))

If we now replace scheduler-loop-0 with scheduler-loop-1 and thread-0 with
thread-1 and re-run our example program above, we get just the output we desire.

14.6.4 Better Primitives for Web Programming

Finally, to tie the knot back to where we began, let’s return to read-number: observe
that, if the language running the server program has call/cc, instead of having to CPS
the entire program, we can simply capture the current continuation and save it in the
hash table, leaving the program structure again intact.

15 Checking Program Invariants Statically: Types
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As programs grow larger or more subtle, developers need tools to help them de-
scribe and validate statements about program invariants. Invariants, as the name sug-
gests, are statements about program elements that are expected to always hold of those
elements. For example, when we write x : number in our typed language, we mean
that x will always hold a number, and that all parts of the program that depend on x

can rely on this statement being enforced. As we will see, types are just one point in a
spectrum of invariants we might wish to state, and static type checking—itself a diverse
family of techniques—is also a point in a spectrum of methods we can use to enforce
the invariants.

15.1 Types as Static Disciplines
In this chapter, we will focus especially on static type checking: that is, checking (de-
clared) types before the program even executes. We have already experienced a form
of this in our programs by virtue of using a typed programming language. We will
explore some of the design space of types and their trade-offs. Finally, though static
typing is an especially powerful and important form of invariant enforcement, we will
also examine some other techniques that we have available.

Consider this program in our typed language:

(define (f [n : number]) : number

(+ n 3))

(f "x")

We get a static type error before the program begins execution. The same program
(without the type annotations) in ordinary Racket fails only at runtime:

(define (f n)

(+ n 3))

(f "x")

Exercise

How would you test the assertions that one fails before the program exe-
cutes while the other fails during execution?

Now consider the following Racket program:

(define f n

(+ n 3))

This too fails before program execution begins, with a parse error. Though we
think of parsing as being somehow distinct from type-checking—usually because the
type-checker assumes it has a parsed program to begin with—it can be useful to think
of parsing as being simply the very simplest kind of type-checking: determining (typ-
ically) whether the program obeys a context-free syntax. Type-checking then asks
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whether it obeys a context-sensitive (or richer) syntax. In short, type-checking is a
generalization of parsing, in that both are concerned with syntactic methods for enforc-
ing disciplines on programs.

15.2 A Classical View of Types
We will begin by introducing a traditional core language of types. Later, we will ex-
plore both extensions [REF] and variations [REF].

15.2.1 A Simple Type Checker

Before we can define a type checker, we have to fix two things: the syntax of our typed
core language and, hand-in-hand with that, the syntax of types themselves.

To begin with, we’ll return to our language with functions-as-values [REF] but be-
fore we added mutation and other complications (some of which we’ll return to later).
To this language we have to add type annotations. Conventionally, we don’t impose
type annotations on constants or on primitive operations such as addition; instead, we
impose them on the boundaries of functions or methods. Over the course of this study
we will explore why this is a good locus for annotations.

Given this decision, our typed core language becomes:

(define-type TyExprC

[numC (n : number)]

[idC (s : symbol)]

[appC (fun : TyExprC) (arg : TyExprC)]

[plusC (l : TyExprC) (r : TyExprC)]

[multC (l : TyExprC) (r : TyExprC)]

[lamC (arg : symbol) (argT : Type) (retT : Type) (body : TyExprC)])

That is, every procedure is annotated with the type of argument it expects and type of
argument it purports to produce.

Now we have to decide on a language of types. To do so, we follow the tradition
that the types abstract over the set of values. In our language, we have two kinds of
values:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : TyExprC) (env : Env)])

It follows that we should have two kinds of types: one for numbers and the other for
functions.

Even numeric types may not be straightforward: What information does a number
type need to record? In most languages, there are actually many numeric types, and
indeed there may not even be a single one that represents “numbers”. However, we have
ignored these gradations between numbers [REF], so it’s sufficient for us to have just
one. Having decided that, do we record additional information about which number?
We could in principle, but we would soon run into decidability problems.
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As for functions, we have more information: the type of expected argument, and
the type of claimed result. We might as well record this information we have been
given until and unless it has proven to not be useful. Combining these, we obtain the
following abstract language of types:

(define-type Type

[numT]

[funT (arg : Type) (ret : Type)])

Now that we’ve fixed both the term and type structure of the language, let’s make sure
we agree on what constitute type errors in our language (and, by fiat, everything not a
type error must pass the type checker). There are three obvious forms of type errors:

• One or both arguments of + is not a number, i.e., is not a numT.

• One or both arguments of * is not a number.

• The expression in the function position of an application is not a function, i.e., is
not a funT.

Do Now!

Any more?

We’re actually missing one:

• The expression in the function position of an application is a function but the type
of the actual argument does not match the type of the formal argument expected
by the function.

It seems clear all other programs in our language ought to type-check.
A natural starting signature for the type-checker would be that it is a procedure

that consumes an expression and returns a boolean value indicating whether or not the
expression type-checked. Because we know expressions contain identifiers, it soon
becomes clear that we will want a type environment, which maps names to types, anal-
ogous to the value environment we have seen so far.

Exercise

Define the types and functions associated with type environments.

Thus, we might begin our program as follows:
<tc-take-1> ::=

(define (tc [expr : TyExprC] [tenv : TyEnv]) : boolean

(type-case TyExprC expr

<tc-take-1-numC-case>
<tc-take-1-idC-case>
<tc-take-1-appC-case>))
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As the abbreviated set of cases above suggests, this approach will not work out.
We’ll soon see why.

Let’s begin with the easy case: numbers. Does a number type-check? Well, on
its own, of course it does; it may be that the surrounding context is not expecting a
number, but that error would be signaled elsewhere. Thus:

<tc-take-1-numC-case> ::=

[numC (n) true]

Now let’s handle identifiers. Is an identifier well-typed? Again, on its own it would
appear to be, provided it is actually a bound identifier; it may not be what the context
desires, but hopefully that too would be handled elsewhere. Thus we might write

<tc-take-1-idC-case> ::=

[idC (n) (if (lookup n tenv)

true

(error 'tc "not a bound identifier"))]

This should make you a little uncomfortable: lookup already signals an error if an
identifier isn’t bound, so there’s no need to repeat it (indeed, we will never get to this
error invocation). But let’s push on.

Now we tackle applications. We should type-check both the function part, to make
sure it’s a function, then ensure that the actual argument’s type is consistent with what
the function declares to be the type of its formal argument. For instance, the function
could be a number and the application could itself be a function, or vice versa, and in
either case we want to prevent such mis-applications.

How does the code look?
<tc-take-1-appC-case> ::=

[appC (f a) (let ([ft (tc f tenv)])

...)]

The recursive call to tc can only tell us whether the function expression type-
checks or not. If it does, how do we know what type it has? If we have an immediate
function, we could reach into its syntax and pull out the argument (and return) types.
But if we have a complex expression, we need some procedure that will calculate the
resulting type of that expression. Of course, such a procedure could only provide a type
if the expression is well-typed; otherwise it would not be able to provide a coherent
answer. In other words, our type “calculator” has type “checking” as a special case!
We should therefore strengthen the inductive invariant on tc: that it not only tells us
whether an expression is typed but also what its type is. Indeed, by giving any type at
all it confirms that the expression types, and otherwise it signals an error.

Let’s now define this richer notion of a type “checker”.
<tc> ::=

(define (tc [expr : TyExprC] [tenv : TyEnv]) : Type

(type-case TyExprC expr
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<tc-numC-case>
<tc-idC-case>
<tc-plusC-case>
<tc-multC-case>
<tc-appC-case>
<tc-lamC-case>))

Now let’s fill in the pieces. Numbers are easy: they have the numeric type.
<tc-numC-case> ::=

[numC (n) (numT)]

Similarly, identifiers have whatever type the environment says they do (and if they
aren’t bound, this signals an error).

<tc-idC-case> ::=

[idC (n) (lookup n tenv)]

Observe, so far, the similarity to and difference from interpreting: in the identifier
case we did essentially the same thing (except we returned a type rather than an actual
value), whereas in the numeric case we returned the abstract “number” rather than
indicate which specific number it was.

Let’s now examine addition. We must make sure both sub-expressions have nu-
meric type; only if they do will the overall expression evaluate to a number itself.

<tc-plusC-case> ::=

[plusC (l r) (let ([lt (tc l tenv)]

[rt (tc r tenv)])

(if (and (equal? lt (numT))

(equal? rt (numT)))

(numT)

(error 'tc "+ not both numbers")))]

We’ve usually glossed over multiplication after considering addition, but now it
will be instructive to handle it explicitly:

<tc-multC-case> ::=

[multC (l r) (let ([lt (tc l tenv)]

[rt (tc r tenv)])

(if (and (equal? lt (numT))

(equal? rt (numT)))

(numT)

(error 'tc "* not both numbers")))]

Do Now!

Did you see what’s different?
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That’s right: practically nothing! (The multC instead of plusC in the type-case,
and the slightly different error message, notwithstanding.) That’s because, from the
perspective of type-checking (in this type language), there is no difference between
addition and multiplication, or indeed between any two functions that consume two
numbers and return one.

Observe another difference between interpreting and type-checking. Both care that
the arguments be numbers. The interpreter then returns a precise sum or product, but
the type-checker is indifferent to the differences between them: therefore the expres-
sion that computes what it returns ((numT)) is a constant, and the same constant in
both cases.

Finally, the two hard cases: application and funcions. We’ve already discussed
what application must do: compute the value of the function and argument expres-
sions; ensure the function expression has function type; and check that the argument
expression is of compatible type. If all this holds up, then the type of the overall
application is whatever type the function body would return (because the value that
eventually returns at run-time is the result of evaluating the function’s body).

<tc-appC-case> ::=

[appC (f a) (let ([ft (tc f tenv)]

[at (tc a tenv)])

(cond

[(not (funT? ft))

(error 'tc "not a function")]

[(not (equal? (funT-arg ft) at))

(error 'tc "app arg mismatch")]

[else (funT-ret ft)]))]

That leaves function definitions. The function has a formal parameter, which is
presumably used in the body; unless this is bound in the environment, the body most
probably will not type-check properly. Thus we have to extend the type environment
with the formal name bound to its type, and in that extended environment type-check
the body. Whatever value this computes must be the same as the declared type of the
body. If that is so, then the function itself has a function type from the type of the
argument to the type of the body.

Exercise

Why do I say “most probably” above?

<tc-lamC-case> ::=

[lamC (a argT retT b)

(if (equal? (tc b (extend-ty-env (bind a argT) tenv)) retT)

(funT argT retT)

(error 'tc "lam type mismatch"))]

Observe another curious difference between the interpreter and type-checker. In the
interpreter, application was responsible for evaluating the argument expression, extend-
ing the environment, and evaluating the body. Here, the application case does check
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the argument expression, but leaves the environment alone, and simply returns the type
of the body without traversing it. Instead, the body is actually traversed by the checker
when checking a function definition, so this is the point at which the environment ac-
tually extends.

15.2.2 Type-Checking Conditionals

Suppose we extend the above language with conditionals. Even the humble if intro-
duces several design decisions. We’ll discuss two here, and return to one of them later
[REF].

1. What should be the type of the test expression? In some languages it must eval-
uate to a boolean value, in which case we have to enrich the type language to
include booleans (which would probably be a good idea anyway). In other lan-
guages it can be any value, and some values are considered “truthy” while others
“falsy”.

2. What should be the relationship between the then- and else-branches? In some
languages they must be of the same type, so that there is a single, unambiguous
type for the overall expression (which is that one type). In other languages the
two branches can have distinct types, which greatly changes the design of the
type-language and -checker, but also of the nature of the programming language
itself.

Exercise

Add booleans to the type language. What does this entail at a minimum,
and what else might be expected in a typical language?

Exercise

Add a type rule for conditionals, where the test expression is expected to
evaluate to a boolean and both then- and else-branches must have the same
type, which is the type of the overall expression.

15.2.3 Recursion in Code

Now that we’ve obtained a basic programming language, let’s add recursion to it. We
saw earlier [REF] that this could be done easily through desugaring. It’ll prove to be a
more complex story here.

A First Attempt at Typing Recursion

Let’s now try to express a simple recursive function. The simplest is, of course, one
that loops forever. Can we write an infinite loop with just functions? We already could
simply with this program—

((lambda (x) (x x))

(lambda (x) (x x)))
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—which we know we can represent in our language with functions as values.
Exercise

Why does this construct an infinite loop? What subtle dependency is it
making about the nature of function calls?

Now that we have a typed language, and one that forces us to annotate all functions,
let’s annotate it. For simplicity, from now on we’ll assume we’re writing programs in
a typed surface syntax, and that desugaring takes care of constructing core language
terms.

Observe, first, that we have two identical terms being applied to each other. Histor-
ically, the overall term is called Ω (capital omega in Greek) and each of the identical
sub-terms is called ω (lower-case omega in Greek). It is not a given that identical terms
must have precisely the same type, because it depends on what invariants we want to
assert of the context of use. In this case, however, observe that x binds to ω, so the sec-
ond ω goes into both the first and second positions. As a result, typing one effectively
types both.

Therefore, let’s try to type ω; let’s call this type γ. It’s clearly a function type, and
the function takes one argument, so it must be of the form φ -> ψ. Now what is that
argument? It’s ω itself. That is, the type of the value going into φ is itself γ. Thus, the
type of ω is γ, which is φ -> ψ, which expands into (φ -> ψ) -> ψ, which further
expands to ((φ -> ψ) -> ψ) -> ψ, and so on. In other words, this type cannot be
written as any finite string!

Do Now!

Did you notice the subtle but important leap we just made?

Program Termination

We observed that the obvious typing of Ω, which entails typing γ, seems to run into
serious problems. From that, however, we jumped to the conclusion that this type
cannot be written as any finite string, for which we’ve given only an intuition, not a
proof. In fact, something even stranger is true: in the type system we’ve defined so far,
we cannot type Ω at all!

This is a strong statement, but we can actually say something much stronger. The
typed language we have so far has a property called strong normalization: every ex-
pression that has a type will terminate computation after a finite number of steps. In
other words, this special (and peculiar) infinite loop program isn’t the only one we
can’t type; we can’t type any infinite loop (or even potential infinite loop). A rough
intuition that might help is that any type—which must be a finite string—can have only
a finite number of ->’s in it, and each application discharges one, so we can perform
only a finite number of applications.

If our language permitted only straight-line programs, this would be unsurprising.
However, we have conditionals and even functions being passed around as values, and
with those we can encode any datatype we want. Yet, we still get this guarantee! That
makes this a somewhat astonishing result.

Exercise
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Try to encode lists using functions in the untyped and then in the typed
language. What do you see? And what does that tell you about the impact
of this type system on the encoding?

This result also says something deeper. It shows that, contrary to what you may
believe—that a type system only prevents a few buggy programs from running—a type
system can change the semantics of a language. Whereas previously we could write an
infinite loop in just one to two lines, now we cannot write one at all. It also shows that
the type system can establish invariants not just about a particular program, but about
the language itself. If we want to absolutely ensure that a program will terminate, we
simply need to write it in this language and pass the type checker, and the guarantee is
ours!

What possible use is a language in which all programs terminate? For general-
purpose programming, none, of course. But in many specialized domains, it’s a tremen-
dously useful guarantee to have. For instance, suppose you are implementing a com-
plex scheduling algorithm; you would like to know that your scheduler is guaranteed to
terminate so that the tasks being scheduled will actually run. There are many other do-
mains, too, where we would benefit from such a guarantee: a packet-filter in a router;
a real-time event processor; a device initializer; a configuration file; the callbacks in
single-threaded JavaScript; and even a compiler or linker. In each case, we have an
almost unstated expectation that these programs will always terminate. And now we
have a language that can offer this guarantee—something it is impossible to test for, no
less! These are not

hypothetical
examples. In the
Standard ML
language, the
language for linking
modules uses
essentially this
typed language for
writing module
linking
specifications. This
means developers
can write quite
sophisticated
abstractions—they
have
functions-as-values,
after all!—while
still being
guaranteed that
linking will always
terminate,
producing a
program.

Typing Recursion

What this says is, whereas before we were able to handle rec entirely through desug-
aring, now we must make it an explicit part of the typed language. For simplicity, we
will consider a special case of rec—which nevertheless covers the common uses—
whereby the recursive identifier is bound to a function. Thus, in the surface syntax, one
might write

(rec (Σ num (n num)

(if0 n

0

(n + (Σ (n + -1)))))

(Σ 10))

for a summation function, where Σ is the name of the function, n its argument, and
num the type consumed by and returned from the function. The expression (Σ 10)

represents the use of this function to sum the number from 10 until 0.
How do we type such an expression? Clearly, we must have n bound in the body

of the function as we type it (but not of course, in the use of the function); this much
we know from typing functions. But what about Σ? Obviously it must be bound in the
type environment when checking the use ((Σ 10)), and its type must be num -> num.
But it must also be bound, to the same type, when checking the body of the function.
(Observe, too, that the type returned by the body must match its declared return type.)
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Now we can see how to break the shackles of the finiteness of the type. It is cer-
tainly true that we can write only a finite number of ->’s in types in the program source.
However, this rule for typing recursion duplicates the -> in the body that refers to itself,
thereby ensuring that there is an inexhaustible supply of applications. It’s our infinite
quiver of arrows.

The code to implement this rule would be as follows. Assuming f is bound to the
function’s name, aT is the function’s argument type and rT is its return type, b is the
function’s body, and u is the function’s use:

<tc-lamC-case> ::=

[recC (f a aT rT b u)

(let ([extended-env

(extend-ty-env (bind f (funT aT rT)) tenv)])

(cond

[(not (equal? rT (tc b

(extend-ty-env

(bind a aT)

extended-env))))

(error 'tc "body return type not correct")]

[else (tc u extended-env)]))]

15.2.4 Recursion in Data

We have seen how to type recursive programs, but this doesn’t yet enable us to create
recursive data. We already have one kind of recursive datum—the function type—but
this is built-in. We haven’t yet seen how developers can create their own recursive
datatypes.

Recursive Datatype Definitions

When we speak of allowing programmers to create recursive data, we are actually
talking about three different facilities at once:

• Creating a new type.

• Letting instances of the new type have one or more fields.

• Letting some of these fields refer to instances of the same type.

In fact, once we allow the third, we must allow one more:

• Allowing non-recursive base-cases for the type.

This confluence of design criteria leads to what is commonly called an algebraic
datatype, such as the types supported by our typed language. For instance, consider
the following definition of a binary tree of numbers: Later [REF], we

will discuss how
types can be
parameterized.

(define-type BTnum

[BTmt]

[BTnd (n : number) (l : BTnum) (r : BTnum)])
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Observe that without a name for the new datatype, BTnum, we would not have been
able to refer back ot it in BTnd. Similarly, without the ability to have more than one
kind of BTnum, we would not have been able to define BTmt, and thus wouldn’t have
been able to terminate the recursion. Finally, of course, we need multiple fields (as in
BTnd) to construct useful and interesting data. In other words, all three mechanisms
are packaged together because they are most useful in conjunction. (However, some
langauges do permit the definition of stand-alone structures. We will return to the
impact of this design decision on the type system later [REF].)

This concludes our initial presentation of recursive types, but it has a fatal problem.
We have not actually explained where this new type, BTnum, comes from. That is
because we have had to pretend it is baked into our type-checker. However, it is simply
impractical to keep changing our type-checker for each new recursive type definition—
it would be like modifying our interpreter each time the program contains a recursive
function! Instead, we need to find a way to make such definitions intrinsic to the type
language. We will return to this problem later [REF].

This style of data definition is sometimes also known as a sum of products. “Prod-
uct” refers to the way fields combine in one variant: for instance, the legal values of a
BTnd are the cross-product of legal values in each of the fields, supplied to the BTnd

constructor. The “sum” is the aggregate of all these variants: any given BTnum value is
just one of these. (Think of “product” as being “and”, and “sum” as being “or”.)

Introduced Types

Now, what impact does a datatype definition have? First, it introduces a new type; then
it uses this to define several constructors, predicates, and selectors. For instance, in the
above example, it first introduces BTnum, then uses it to ascribe the following types:

BTmt : -> BTnum

BTnd : number * BTnum * BTnum -> BTnum

BTmt? : BTnum -> boolean

BTnd? : BTnum -> boolean

BTnd-n : BTnum -> number

BTnd-l : BTnum -> BTnum

BTnd-r : BTnum -> BTnum

Observe a few salient facts:

• Both the constructors create instances of BTnum, not something more refined.
We will discuss this design tradeoff later [REF].

• Both predicates consume values of type BTnum, not “any”. This is because the
type system can already tell us what type a value is. Thus, we only need to
distinguish between the variants of that one type.

• The selectors really only work on instances of the relevant variant—e.g., BTnd-
n can work only on instances of BTnd, not on instances of BTmt—but we don’t
have a way to express this in the static type system for lack of a suitable static
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type. Thus, applying these can only result in a dynamic error, not a static one
caught by the type system.

There is more to say about recursive types, which we will return to shortly [REF].

Pattern-Matching and Desugaring

Once we observe that these are the types, the only thing left is to provide an account of
pattern-matching. For instance, we can write the expression

(type-case BTnum t

[BTmt () e1]

[BTnd (nv lt rt) e2])

We have already seen [REF] that this can be written in terms of the functions defined
above. We can simulate the binding done by this pattern-matcher using let:

(cond

[(BTmt? t) e1]

[(BTnd? t) (let ([nv (BTnd-n t)]

[lt (BTnd-l t)]

[rt (BTnd-r t)])

e2)])

In short, this can be done by a macro, so pattern-matching does not need to be in the
core language and can instead be delegated to desugaring. This, in turn, means that one
language can have many different pattern-matching mechanisms.

Except, that’s not quite true. Somehow, the macro that generates the code above in
terms of cond needs to know that the three positional selectors for a BTnd are BTnd-n,
BTnd-l, and BTnd-r, respectively. This information is explicit in the type definition
but only implicitly present in the use of the pattern-matcher (that, indeed, being the
point). Thus, somehow this information must be communicated from definition to use.
Thus the macro expander needs something akin to the type environment to accomplish
its task.

Observe, furthermore, that expressions such as e1 and e2 cannot be type-checked—
indeed, cannot even be reliable identified as expressions—until macro expansion ex-
pands the use of type-case. Thus, expansion depends on the type environment, while
type-checking depends on the result of expansion. In other words, the two are symbi-
otic and need to happen, not quite in “parallel”, but rather in lock-step. Thus, building
desugaring for a typed language, where the syntactic sugar makes assumptions about
types, is a little more intricate than doing so for an untyped language.

15.2.5 Types, Time, and Space

It is evident that types already bestow a performance benefit in safe languages. That
is because the checks that would have been performed at run-time—e.g., + checking
that both its arguments are indeed numbers—are now performed statically. In a typed
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language, an annotation like : number already answers the question of whether or not
something is of a particular a type; there is nothing to ask at run-time. As a result, these
type-level predicates can (and need to) disappear entirely, and with them any need to
use them in programs.

This is at some cost to the developer, who must convince the static type system that
their program does not induce type errors; due to the limitations of decidability, even
programs that might have run without error might run afoul of the type system. Nev-
ertheless, for programs that meet this requirement, types provide a notable execution
time saving.

Now let’s discuss space. Until now, the language run-time system has needed to
store information attached to every value indicating what its type is. This is how it
can implement type-level predicates such as number?, which may be used both by
developers and by primitives. If those predicates disappear, so does the space needed
to hold information to implement them. Thus, type-tags are no longer necessary. They would,

however, still be
needed by the
garbage collector,
though other
representations
such as BIBOP can
greatly reduce their
space impact.

The type-like predicates still left are those for variants: BTmt? and BTnd?, in the
example above. These must indeed be applied at run-time. For instance, as we have
noted, selectors like BTnd-n must perform this check. Of course, some more optimiza-
tions are possible. Consider the code generated by desugaring the pattern-matcher:
there is no need for the three selectors to implement this check, because control could
only have gotten to them after BTnd? returned a true vlaue. Thus, the run-time system
could provide just the desugaring level access to special unsafe primitives that do not
perform the check, resulting in generated code such as this:

(cond

[(BTmt? t) e1]

[(BTnd? t) (let ([nv (BTnd-n/no-check t)]

[lt (BTnd-l/no-check t)]

[rt (BTnd-r/no-check t)])

e2)])

The net result, however, is that the run-time representation must still store enough
information to accurately answer these questions. However, previously it needed to use
enough bits to record every possible type (and variant). Now, because the types have
been statically segregated, for a type with no variants (e.g., there is only one kind of
string), there is no need to store any variant information at all; that means the run-time
system can use all available bits to store actual dynamic values.

In contrast, when variants are present, the run-time system must sacrifice bits to
distinguish between the variants, but the number of variants within a type is obviously
far smaller than the number of variants and types across all types. In the BTnum exam-
ple above, there are only two variants, so the run-time system needs to use only one bit
to record which variant of BTnum a value represents.

Observe, in particular, that the type system’s segregation prevents confusion. If
there are two different datatypes that each have two variants, in the untyped world all
these four variants require distinct representations. In contrast, in the typed world these
representations can overlap across types, because the static type system will ensure one
type’s variants are never confused for that the another. Thus, types have a genuine space
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(saving representation) and time (eliminating run-time checks) performance benefit for
programs.

15.2.6 Types and Mutation

We have now covered most of the basic features of our core language other than muta-
tion. In some ways, types have a simple interaction with mutation, and this is because
in a classical setting, they don’t interact at all. Consider, for instance, the following
untyped program:

(let ([x 10])

(begin

(set! x 5)

(set! x "something")))

What is “the type” of x? It doesn’t really have one: for some time it’s a number, and
later (note the temporal word) it’s a string. We simply can’t give it a type. In general,
type checking is an atemporal activity: it is done once, before the program runs, and
must hence be independent of the specific order in which programs execute. Keeping
track of the precise values in the store is hence beyond the reach of a type-checker.

The example above is, of course, easy to statically understand, but we should never
be mislead by simple examples. Suppose instead we had a program like

(let ([x 10])

(if (even? (read-number "Enter a number"))

(set! x 5)

(set! x "something")))

Now it is literally impossible to reach any static conclusion about the type of x after the
conditional finishes, because only at run-time can we know what the user might have
entered.

To avoid this morass, traditional type checkers adopt a simple policy: types must be
invariant across mutation. That is, a mutation operation—whether variable mutation
or structure mutation—cannot change the type of the mutant. Thus, the above exam-
ples would not type in our type language so far. How much flexibility this gives the
programmer is, however, a function of the type language. For instance, if we were to
admit a more flexible type that stands for “number or string”, then the examples above
would type, but x would always have this, less precise, type, and all uses of x would
have to contend with its reduced specificity, an issue we will return to later [REF].

In short, mutation is easy to account for in a traditional type system because its
rule is simply that, while the value can change in ways below the level of specificity
of the type system, the type cannot change. In the case of an operation like set! (or
our core language’s setC), this means the type of the assigned value must match that
of the variable. In the case of structure mutation, such as boxes, it means the assigned
value must match that the box’s contained type.
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15.2.7 The Central Theorem: Type Soundness

We have seen earlier [REF] that certain type languages can offer very strong theo-
rems about their programs: for instance, that all programs in the language terminate.
In general, of course, we cannot obtain such a guarantee (indeed, we added general
recursion precisely to let ourselves write unbounded loops). However, a meaningful
type system—indeed, anything to which we wish to bestow the noble title of a type
system—ought to provide some kind of meaningful guarantee that all typed programs We have repeatedly

used the term “type
system”. A type
system is usually a
combination of
three components: a
language of types, a
set of type rules,
and an algorithm
that applies these
rules to programs.
By largely
presenting our type
rules embedded in a
function, we have
blurred the
distinction between
the second and third
of these, but can
still be thought of
as intellectually
distinct.

enjoy. This is the payoff for the programmer: by typing this program, she can be cer-
tain that certain bad things will certainly not happen. Short of this, we have just a
bug-finder; while it may be useful, it is not a sufficient basis for building any higher-
level tools (e.g., for obtaining security or privacy or robustness guarantees).

What theorem might we want of a type system? Remember that the type checker
runs over the static program, before execution. In doing so, it is essentially making a
prediction about the program’s behavior: for instance, when it states that a particular
complex term has type num, it is effectively predicting that when run, that term will
produce a numeric value. How do we know this prediction is sound, i.e., that the type
checker never lies? Every type system should be accompanied by a theorem that proves
this.

There is a good reason to be suspicious of a type system, beyond general skep-
ticism. There are many differences between the way a type checker and a program
evaluator work:

• The type checker only sees program text, whereas the evaluator runs over actual
stores.

• The type environment binds identifiers to types, whereas the evaluator’s environ-
ment binds identifiers to values or locations.

• The type checker compresses (even infinite) sets of values into types, whereas
the evaluator treats these distinctly.

• The type checker always terminates, whereas the evaluator might not.

• The type checker passes over the body of each expression only once, whereas
the evaluator might pass over each body anywhere from zero to infinite times.

Thus, we should not assume that these will always correspond!
The central result we wish to have for a given type-system is called soundness. It

says this. Suppose we are given an expression (or program) e. We type-check it and
conclude that its type is t. When we run e, let us say we obtain the value v. Then v

will also have type t.
The standard way of proving this theorem is to prove it in two parts, known as

progress and preservation. Progress says that if a term passes the type-checker, it will
be able to make a step of evaluation (unless it is already a value); preservation says that
the result of this step will have the same type as the original. If we interleave these
steps (first progress, then preservation; repeat), we can conclude that the final answer
will indeed have the same type as the original, so the type system is indeed sound.
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For instance, consider this expression: (+ 5 (* 2 3)). It has the type num. In
a sound type system, progress offers a proof that, because this term types, and is not
already a value, it can take a step of execution—which it clearly can. After one step
the program reduces to (+ 5 6). Sure enough, as preservation proves, this has the
same type as the original: num. Progress again says this can take a step, producing
11. Preservation again shows that this has the same type as the previous (intermediate)
expressions: num. Now progress finds that we are at an answer, so there are no steps left
to be taken, and our answer is of the same type as that given for the original expression.

However, this isn’t the entire story. There are two caveats:

1. The program may not produce an answer at all; it might loop forever. In this case,
the theorem strictly speaking does not apply. However, we can still observe that
every intermediate term still has the same type, so the program is computing
meaningfully even if it isn’t producing a value.

2. Any rich enough language has properties that cannot be decided statically (and
others that perhaps could be, but the language designer chose to put off until
run-time). When one of these properties fails—e.g., the array index being within
bounds—there is no meaningful type for the program. Thus, implicit in every
type soundness theorem is some set of published, permitted exceptions or error
conditions that may occur. The developer who uses a type system implicitly
signs on to accepting this set.

As an example of the latter set, the user of a typical typed language acknowledges that
vector dereference, list indexing, and so on may all yield exceptions.

The latter caveat looks like a cop-out. In fact, it is easy to forget that it is really
a statement about what cannot happen at run-time: any exception not in this set will
provably not be raised. Of course, in languages designed with static types in the first
place, it is not clear (except by loose analogy) what these exceptions might be, be-
cause there would be no need to define them. But when we retrofit a type system onto
an existing programming language—especially languages with only dynamic enforce-
ment, such as Racket or Python—then there is already a well-defined set of exceptions,
and the type-checker is explicitly stating that some set of those exceptions (such as
“non-function found in application position” or “method not found”) will simply never
occur. This is therefore the payoff that the programmer receives in return for accepting
the type system’s syntactic restrictions.

15.3 Extensions to the Core
Now that we have a basic typed language, let’s explore how we can extend it to obtain
a more useful programming language.

15.3.1 Explicit Parametric Polymorphism

Which of these is the same?

• List<String>
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• List<String>

• (listof string)

Actually, none of these is quite the same. But the first and third are very alike,
because the first is in Java and the third in our typed language, whereas the second, in
C++, is different. All clear? No? Good, read on!

Parameterized Types

The language we have been programming in already demonstrates the value of para-
metric polymorphism. For instance, the type of map is given as

(('a -> 'b) (listof 'a) -> (listof 'b))

which says that for all types 'a and 'b, map consumes a function that generates 'b

values from 'a values, and a list of 'a values, and generates the corresponding list of
'b values. Here, 'a and 'b are not concrete types; rather, they are type variables (in
our terminology, these should properly be called “type identifiers” because they don’t
change within the course of an instantiation; however, we will stick to the traditional
terminology).

A different way to understand this is that there is actually an infinite family of map
functions. For instance, there is a map that has this type:

((number -> string) (listof number) -> (listof string))

and another one of this type (nothing says the types have to be base types):

((number -> (number -> number)) (listof number) -> (listof (number -

> number)))

and yet another one of this type (nothing says 'a and 'b can’t be the same):

((string -> string) (listof string) -> (listof string))

and so on. Because they have different types, they would need different names: map_num_str,
map_num_num->num, map_str_str, and so on. But that would make them different
functions, so we’d have to always refer to a specific map rather than each of the generic
ones.

Obviously, it is impossible to load all these functions into our standard library:
there’s an infinite number of these! We’d rather have a way to obtain each of these
functions on demand. Our naming convention offers a hint: it is as if map takes two
parameters, which are types. Given the pair of types as arguments, we can then obtain
a map that is customized to that particular type. This kind of parameterization over
types is called parametric polymorphism. Not to be confused

with the
“polymorphism” of
objects, which we
will discuss below
[REF].

149



Making Parameters Explicit

In other words, we’re effectively saying that map is actually a function of perhaps four
arguments, two of them types and two of them actual values (a function and a list). In
a language with explicit types, we might try to write

(define (map [a : ???] [b : ???] [f : (a -> b)] [l : (listof a)]) : (listof b)

...)

but this raises some questions. First, what goes in place of the ???? These are the types
of a and b. But if a and b are themselves going to be replaced with types, then what is
the type of a type? Second, do we really want to be calling map with four arguments on
every instantiation? Third, do we really mean to take the type parameters first before
any actual values? The answers to these questions actually lead to a very rich space of
polymorphic type systems, most of which we will not explore here. I recommend

reading Pierce’s
Types and
Programming
Languages for a
modern, accessible
introduction.

Observe that once we start parameterizing, more code than we expect ends up being
parameterized. For instance, consider the type of the humble cons. Its type really is
parametric over the type of values in the list (even though it doesn’t actually depend on
those values!—more on that in a bit [REF]) so every use of cons must be instantiated
at the appropriate type. For that matter, even empty must be instantiated to create an
empty list of the correct type! Of course, Java and C++ programmers are familiar with
this pain.

Rank-1 Polymorphism

Instead, we will limit ourselves to one particularly useful and tractable point in this
space, which is the type system of Standard ML, of the typed language of this book,
of earlier versions of Haskell, roughly that of Java and C# with generics, and roughly
that obtained using templates in C++. This language defines what is called predicative,
rank-1, or prenex polymorphism. It answers the above questions thus: nothing, no, and
yes. Let’s explore this below.

We first divide the world of types into two groups. The first group consists of the
type language we’ve used until, but extended to include type variables; these are called
monotypes. The second group, known as polytypes, consists of parameterized types;
these are conventionally written with a ∀ prefix, a list of type variables, and then a type
expression that might use these variables. Thus, the type of map would be:

∀ a, b : (('a -> 'b) (listof 'a) -> (listof 'b))

Since “∀” is the logic symbol for “for all”, you would read this as: “for all types 'a
and 'b, the type of map is...”.

In rank-1 polymorphism, the type variables can only be substituted with mono-
types. (Furthermore, these can only be concrete types, because there would be nothing
left to substitute any remaining type variables.) As a result, we obtain a clear sepa-
ration between the type variable-parameters and regular parameters. We don’t need
to provide a “type annotation” for the type variables because we know precisely what
kind of thing they can be. This produces a relatively clean language that still offers
considerable expressive power. Impredicative

languages erase the
distinction between
monotypes and
polytypes, so a type
variable can be
instantiated with
another
polymorphic type.
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Observe that because type variables can only be replaced with monotypes, they are
all independent of each other. As a result, all type parameters can be brought to the
front of the parameter list. This is what enables us to write types in the form ∀ tv,

... : t where the tv are type variables and t is a monotype (that might refer to those
variables). This justifies not only the syntax but also the name “prenex”. It will prove
to also be useful in the implementation.

Interpreting Rank-1 Polymorphism as Desugaring

The simplest implementation of this feature is to view it as a form of desugaring: this
is essentially the interpretation taken by C++. (Put differently, because C++ has a
macro system in the form of templates, by a happy accident it obtains a form of rank-
1 polymorphism through the use of templates.) For instance, imagine we had a new
syntactic form, define-poly, which takes a name, a type variable, and a body. On
every provision of a type to the name, it replaces the type variable with the given type
in the body. Thus:

(define-poly (id t) (lambda ([x : t]) : t x))

defines an identity function by first defining id to be polymorphic: given a concrete
type for t, it yields a procedure of one argument of type (t -> t) (where t is appro-
priately substituted). Thus we can instantiate id at many different types—

(define id_num (id number))

(define id_str (id string))

—thereby obtaining identity functions at each of those types: (test (id_num 5) 5)

(test (id_str "x") "x") In contrast, expressions like (id_num "x") (id_str

5) will, as we would expect, fail to type-check (rather than fail at run-time).
In case you’re curious, here’s the implementation. For simplicity, we assume there

is only one type parameter; this is easy to generalize using .... We will not only define
a macro for define-poly, it will in turn define a macro:

(define-syntax define-poly

(syntax-rules ()

[(_ (name tyvar) body)

(define-syntax (name stx)

(syntax-case stx ()

[(_ type)

(with-syntax ([tyvar #'type])

#'body)]))]))

Thus, given a definition such as

(define-poly (id t) (lambda ([x : t]) : t x))

the language creates a macro named id: the part that begins with (define-syntax

(name ...) ...) (where, in this example, name is id). An instantiation of id, such
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as (id number), replaces t the type variable, tyvar, with the given type. To circum-
vent hygiene, we use with-syntax to force all uses of the type variable (tyvar) to
actually be replaced with the given type. Thus, in effect,

(define id_num (id number))

turns into

(define id_num (lambda ([x : number]) : number x))

However, this approach has two important limitations.

1. Let’s try to define a recursive polymorphic function, such as filter. Earlier we
have said that we ought to instantiate every single polymorphic value (such as
even cons and empty) with types, but to keep our code concise we’ll rely on the
fact that the underlying typed language already does this, and focus just on type
parameters for filter. Here’s the code:

(define-poly (filter t)

(lambda ([f : (t -> boolean)] [l : (listof t)]) : (listof t)

(cond

[(empty? l) empty]

[(cons? l) (if (f (first l))

(cons (first l)

((filter t) f (rest l)))

((filter t) f (rest l)))])))

Observe that at the recursive uses of filter, we must instantiate it with the
appropriate type.

This is a perfectly good definition. There’s just one problem. When we try to
use it—e.g.,

(define filter_num (filter number))

DrRacket does not terminate. Specifically, macro expansion does not terminate,
because it is repeatedly trying to make new copies of the code of filter. If, in
contrast, we write the function as follows, expansion terminates—

(define-poly (filter2 t)

(letrec ([fltr

(lambda ([f : (t -> boolean)] [l : (listof t)]) : (listof t)

(cond

[(empty? l) empty]

[(cons? l) (if (f (first l))

(cons (first l) (fltr f (rest l)))

(fltr f (rest l)))]))])

fltr))

152



but this needlessly pushes pain onto the user. Indeed, some template expanders
will cache previous values of expansion and avoid re-generating code when given
the same parameters. (Racket cannot do this because, in general, the body of
a macro can depend on mutable variables and values and even perform input-
output, so Racket cannot guarantee that a given input will always generate the
same output.)

2. Consider two instantiations of the identity function. We cannot compare id_num
and id_str because they are of different types, but even if they are of the same
type, they are not eq?:

(test (eq? (id number) (id number)) #f)

This is because each use of id creates a new copy of the body. Now even if
the optimization we mentioned above were applied, so for the same type there
is only one code body, there would still be different code bodies for different
types—but even this is unnecessary! There’s absolutely nothing in the body of Indeed, C++

templates are
notorious for
creating code bloat;
this is one of the
reasons.

id, for instance, that actually depends on the type of the argument. Indeed, the
entire infinite family of id functions can share just one implementation. The
simple desugaring strategy fails to provide this.

In other words, the desugaring based strategy, which is essentially an implemen-
tation by substitution, has largely the same problems we saw earlier with regards to
substitution as an implementation of parameter instantiation. However, in other cases
substitution also gives us a ground truth for what we expect as the program’s behavior.
The same will be true with polymorphism, as we will soon see [REF].

Observe that one virtue to the desugaring strategy is that it does not require our type
checker to “know” about polymorphism. Rather, the core type language can continue to
be monomorphic, and all the (rank-1) polymorphism is handled entirely through expan-
sion. This offers a cheap strategy for adding polymorphism to a language, though—as
C++ shows—it also introduces significant overheads.

Finally, though we have only focused on functions, the preceding discussions ap-
plies equally well to data structures.

Alternate Implementations

There are other implementation strategies that don’t suffer from these problems. We
won’t go into them here, but the essence of at least some of them is the “caching”
approach we sketched above. Because we can be certain that, for a given set of type
parameters, we will always get the same typed body, we never need to instantiate a
polymorphic function at the same type twice. This avoids the infinite loop. If we type-
check the instantiated body once, we can avoid checking at other instantiations of the
same type (because the body will not have changed). Furthermore, we do not need to
retain the instantiated sources: once we have checked the expanded program, we can
dispose of the expanded terms and retain just one copy at run-time. This avoids all the
problems discussed in the pure desugaring strategy shown above, while retaining the
benefits.
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Actually, we are being a little too glib. One of the benefits of static types is that
they enable us to pick more precise run-time representations. For instance, a static type
can tell us whether we have a 32-bit or 64-bit number, or for that matter a 32-bit value
or a 1-bit value (effectively, a boolean). A compiler can then generate specialized code
for each representation, taking advantage of how the bits are laid out (for example, 32
booleans can be packed into a single 32-bit word). Thus, after type-checking at each
used type, the polymorphic instantiator may keep track of all the special types at which
a function or data structure was used, and provide this information to the compiler for
code-generation. This will then result in several copies of the function, none of which
are eq? with each other—but for good reason and, because their operations are truly
different, rightly so.

Relational Parametricity

There’s one last detail we must address regarding polymorphism.
We earlier said that a function like cons doesn’t depend on the specific values of its

arguments. This is also true of map, filter, and so on. When map and filter want to
operate on individual elements, they take as a parameter another function which in turn
is responsible for making decisions about how to treat the elements; map and filter

themselves simply obey their parameter functions.
One way to “test” whether this is true is to substitute some different values in the

argument list, and a correspondingly different parameter function. That is, imagine we
have a relation between two sets of values; we convert the list elements according to
the relation, and the parameter function as well. The question is, will the output from
map and filter also be predictable by the relation? If, for some input, this was not
true of the output of map, then it must be that map inspected the actual values and did
something with that information. But in fact this won’t happen for map, or indeed most
of the standard polymorphic functions.

Functions that obey this relational rule are called relationally parametric. This is Read Wadler’s
Theorems for Free!
and Reynolds’s
Types, Abstraction
and Parametric
Polymorphism.

another very powerful property that types give us, because they tell us there is a strong
limit on the kinds of operations such polymorphic functions can perform: essentially,
that they can drop, duplicate, and rearrange elements, but not directly inspect and make
decisions on them.

At first this sounds very impressive (and it is!), but on inspection you might re-
alize this doesn’t square with your experience. In Java, for instance, a polymorphic
method can still use instanceof to check which particular kind of value it obtained
at run-time, and change its behavior accordingly. Such a method would indeed not be
relationally parametric! Indeed, relational parametricity can equally be viewed as a On the Web, you

will often find this
property described
as the inability of a
function to inspect
the
argument—which is
not quite right.

statement of the weakness of the language: that it permits only a very limited set of op-
erations. (You could still inspect the type—but not act upon what you learned, which
makes the inspection pointless. Therefore, a run-time system that wants to simulate
relational parametricity would have to remove operations like instanceof as well as
various proxies to it: for instance, adding 1 to a value and catching exceptions would
reveal whether the value is a number.) Nevertheless, it is a very elegant and surprising
result, and shows the power of program reasoning possible with rich type systems.
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15.3.2 Type Inference

Writing polymorphic type instantiations everywhere can be an awfully frustrating pro-
cess, as users of many versions of Java and C++ can attest. Imagine if in our programs,
every single time we wrote first or rest, we had to also instantiate it at a type! The
reason we have been able to avoid this fate is because our language implements type
inference. This is what enables us to write the definition

(define (mapper f l)

(cond

[(empty? l) empty]

[(cons? l) (cons (f (first l)) (mapper f (rest l)))]))

and have the programming environment automatically declare that
> mapper

- (('a -> 'b) (listof 'a) -> (listof 'b))

Not only is this the correct type, this is a very general type! The process of being able
to derive such general types just from the program structure feels almost magical. Now
let’s look behind the curtain.

First, let’s understand what type inference is doing. Some people mistakenly think
of languages with inference as having no type declarations, with inference taking their
place. This is confused at multiple levels. For one thing, even in languages with
inference, programmers are free (and for documentation purposes, often encouraged—
as you have been) to declare types. Furthemore, in the absence of such declarations, it Sometimes,

inference is also
undecidable and
programmers have
no choice but to
declare some of the
types. Finally,
writing explicit
annotations can
greatly reduce
indecipherable error
messages.

is not quite clear what inference actually means.
Instead, it is better to think of the underlying language as being fully, explicitly

typed—just like the polymorphic language we have just studied [REF]. We will simply
say that we are free to leave the type annotations after the :’s blank, and assume some
programming environment feature will fill them in for us. (And if we can go that far,
we can drop the :’s and extra embellishments as well, and let them all be inserted
automatically. Thus, inference becomes simply a user convenience for alleviating the
burden of writing type annotations, but the language underneath is explicitly typed.

How do we even think about what inference does? Suppose we have an expression
(or program) e, written in an explicitly typed language: i.e., e has type annotations
everywhere they are required. Now suppose we erase all annotations in e, and use a
procedure infer to deduce them back.

Do Now!

What property do we expect of infer?

We could demand many things of it. One might be that it produces precisely those
annotations that e originally had. This is problematic for many reasons, not least that e
might not even type-check, in which case how could infer possibly know what they
were (and hence should be)? This might strike you as a pedantic trifle: after all, if e
didn’t type-check, how can erasing its annotations and filling them back in make it do
so? Since neither program type-checks, who cares?

Do Now!

155



Is this reasoning correct?

Suppose e is

(lambda ([x : number]) : string x)

This procedure obviously fails to type-check. But if we erase the type annotations—
obtaining

(lambda (x) x)

—we equally obviously obtain a typeable function! Therefore, a more reasonable de-
mand might be that if the original e type-checks, then so must the version with an-
notations replaced by inferred types. This one-directional implication is useful in two
ways:

1. It does not say what must happen if e fails to type-check, i.e., it does not preclude
the type inference algorithm we have, which makes the faultily-typed identity
function above typeable.

2. More importantly, it assures us that we lose nothing by employing type inference:
no program that was previously typeable will now cease to be so. That means we
can focus on using explicit annotations where we want to, but will not be forced
to do so. Of course, this only

holds if inference is
decidable.We might also expect that both versions type to the same type, but that is not a given:

the function

(lambda ([x : number]) : number x)

types to (number -> number), whereas applying inference to it after erasing types
yields a much more general type. Therefore, relating these types and giving a precise
definition of type equality is not trivial, though we will briefly return to this issue later
[REF].

With these preliminaries out of the way, we are now ready to delve into the mechan-
ics of type inference. The most important thing to note is that our simple, recursive-
descent type-checking algorithm [REF] will no longer work. That was possible because
we already had annotations on all function boundaries, so we could descend into func-
tion bodies carrying information about those annotations in the type environment. Sans
these annotations, it is not clear how to descend.

In fact, it is not clear that there is any particular direction that makes more sense
than another. In a definition like mapper above, each fragment of code influences the
other. For instance, applying empty?, cons?, first, and rest to l all point to its
being a list. But a list of what? We can’t tell from any of those operations. However,
the fact that we apply f to each (or indeed, any) first element means the list members
must be of a type that can be passed to f. Similarly, we know the output must be a list
because of cons and empty. But what are its elements? They must be the return type
of f. Finally, note something very subtle: when the argument list is empty, we return
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empty, not l (which we know is bound to empty at that point). Using the former
leaves the type of the return free to be any kind of list at all (constrained only by what
f returns); using the latter would force it to be the same type as the argument list.

All this information is in the function. But how do we extract it systematically and
in an algorithm that terminates and enjoys the property we have stated above? We do
this in two steps. First we generate constraints, based on program terms, on what the
types must be. Then we solve constraints to identify inconsistencies and join together
constraints spread across the function body. Each step is relatively simple, but the
combination creates magic.

Constraint Generation

Our goal, ultimately, is to find a type to fill into every type annotation position. It
will prove to be just as well to find a type for every expression. A moment’s thought
will show that this is likely necessary anyway: for instance, how can we determine the
type to put on a function without knowing the type of its body? It is also sufficient, in
that if every expression has had its type calculated, this will include the ones that need
annotations.

First, we must generate constraints to (later) solve. Constraint generation walks
the program source, emitting appropriate constraints on each expression, and returns
this set of constraints. It works by recursive descent mainly for simplicity; it really
computes a set of constraints, so the order of traversal and generation really does not
matter in principle—so we may as well pick recursive descent, which is easy—though
for simplicity we will use a list to represent this set.

What are constraints? They are simply statements about the types of expressions.
In addition, though the binding instances of variables are not expressions, we must
calculate their types too (because a function requires both argument and return types).
In general, what can we say about the type of an expression?

1. That it is related to the type of some identifier.

2. That it is related to the type of some other expression.

3. That it is a number.

4. That it is a function, whose domain and range types are presumably further con-
strained.

Thus, we define the following two datatypes:

(define-type Constraints

[eqCon (lhs : Term) (rhs : Term)])

(define-type Term

[tExp (e : ExprC)]

[tVar (s : symbol)]

[tNum]

[tArrow (dom : Term) (rng : Term)])
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Now we can define the process of generating constraints:
<constr-gen> ::=

(define (cg [e : ExprC]) : (listof Constraints)

(type-case ExprC e

<constr-gen-numC-case>
<constr-gen-idC-case>
<constr-gen-plusC/multC-case>
<constr-gen-appC-case>
<constr-gen-lamC-case>))

When the expression is a number, all we can say is that we expect the type of the
expression to be numeric:

<constr-gen-numC-case> ::=

[numC (_) (list (eqCon (tExp e) (tNum)))]

This might sound trivial, but what we don’t know is what other expectations are
being made of this expression by those containing it. Thus, there is the possibility that
some outer expression will contradict the assertion that this expression’s type must be
numeric, leading to a type error.

For an identifier, we simply say that the type of the expression is whatever we
expect to be the type of that identifier:

<constr-gen-idC-case> ::=

[idC (s) (list (eqCon (tExp e) (tVar s)))]

If the context limits its type, then this expression’s type will automatically be lim-
ited, and must then be consistent with what its context expects of it.

Addition gives us our first look at a contextual constraint. For an addition expres-
sion, we must first make sure we generate (and return) constraints in the two sub-
expressions, which might be complex. That done, what do we expect? That each of
the sub-expressions be of numeric type. (If the form of one of the sub-expressions de-
mands a type that is not numeric, this will lead to a type error.) Finally, we assert that
the entire expression’s type is itself numeric. append3 is just a

three-argument
version of append.

<constr-gen-plusC/multC-case> ::=

[plusC (l r) (append3 (cg l)

(cg r)

(list (eqCon (tExp l) (tNum))

(eqCon (tExp r) (tNum))

(eqCon (tExp e) (tNum))))]

The case for multC is identical other than the variant name.
Now we get to the other two interesting cases, function declaration and applica-

tion. In both cases, we must remember to generate and return constraints of the sub-
expressions.
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In a function definition, the type of the function is a function (“arrow”) type, whose
argument type is that of the formal parameter, and whose return type is that of the body:

<constr-gen-lamC-case> ::=

[lamC (a b) (append (cg b)

(list (eqCon (tExp e) (tArrow (tVar a) (tExp b)))))]

Finally, we have applications. We cannot directly state a constraint on the type of
the application. Rather, we can say that the function in the application position must
consume arguments of the actual parameter expression’s type, and return types of the
application expression’s type:

<constr-gen-appC-case> ::=

[appC (f a) (append3 (cg f)

(cg a)

(list (eqCon (tExp f) (tArrow (tExp a) (tExp e)))))]

And that’s it! We have finished generating constraints; now we just have to solve
them.

Constraint Solving Using Unification

The process used to solve constraints is known as unification. A unifier is given a
set of equations. Each equation maps a variable to a term, whose datatype is above.
Note one subtle point: we actually have two kinds of variables. Both tvar and tExp

are “variables”, the former evidently so but the latter equally so because we need to
solve for the types of these expressions. (An alternate formulation would introduce
fresh type variables for each expression, but we would still need a way to identify
which ones correspond to which expression, which eq? on the expressions already
does automatically. Also, this would generate far larger constraint sets, making visual
inspection daunting.)

For our purposes, the goal of unification is generate a substitution, or mapping
from variables to terms that do not contain any variables. This should sound familiar:
we have a set of simultaneous equations in which each variable is used linearly; such
equations are solved using Gaussian elimination. In that context, we know that we can
end up with systems that are both under- and over-constrained. The same thing can
happen here, as we will soon see.

The unification algorithm works iteratively over the set of constraints. Because
each constraint equation has two terms and each term can be one of four kinds, there
are essentially sixteen cases to consider. Fortunately, we can cover all sixteen with
fewer actual code cases.

The algorithm begins with the set of all constraints, and the empty substitution.
Each constraint is considered once and removed from the set, so in principle the ter-
mination argument should be utterly simple, but it will prove to be only slightly more
tricky in reality. As constraints are disposed, the substitution set tends to grow. When
all constraints have been disposed, unification returns the final substitution set.
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For a given constraint, the unifier examines the left-hand-side of the equation. If it is
a variable, it is now ripe for elimination. The unifier adds the variable’s right-hand-side
to the substitution and, to truly eliminate it, replaces all occurrences of the variable in
the substitution with the this right-hand-side. In practice this needs to be implemented
efficiently; for instance, using a mutational representation of these variables can avoid
having to search-and-replace all occurrences. However, in a setting where we might
need to backtrack (as we will, in the presence of unification [REF]), the mutational
implementation has its own disadvantages.

Do Now!

Did you notice the subtle error above?

The subtle error is this. We said that the unifier eliminates the variable by replacing
all instances of it in the substitution. However, that assumes that the right-hand-side
does not contain any instances of the same variable. Otherwise we have a circular
definition, and it becomes impossible to perform this particular substitution. For this
reason, unifiers include a occurs check: a check for whether the same variable occurs
on both sides and, if it does, decline to unify.

Do Now!

Construct a term whose constraints would trigger the occurs check.

Do you remember ω?
Let us now consider the implementation of unification. It is traditional to denote

the substitution by the Greek letter Θ.

(define-type-alias Subst (listof Substitution))

(define-type Substitution

[sub [var : Term] [is : Term]])

(define (unify [cs : (listof Constraints)]) : Subst

(unify/Θ cs empty))

Let’s get the easy parts out of the way:
<unify/Θ> ::=

(define (unify/Θ [cs : (listof Constraints)] [Θ : Subst]) : Subst

(cond

[(empty? cs) Θ]

[(cons? cs)

(let ([l (eqCon-lhs (first cs))]

[r (eqCon-rhs (first cs))])

(type-case Term l

<unify/Θ-tVar-case>
<unify/Θ-tExp-case>
<unify/Θ-tNum-case>
<unify/Θ-tArrow-case>))]))
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Now we’re ready for the heart of unification. We will depend on a function, ex-
tend+replace, with this signature: (Term Term Subst -> Subst). We expect
this to perform the occurs test and, if it fails (i.e., there is no circularity), extends the
substituion and replaces all existing instances of the first term with the second in the
substitution. Similarly, we will assume the existence of lookup: (Term subst ->

(optionof Term))

Exercise

Define extend+replace and lookup.

If the left-hand of a constraint equation is a variable, we first look it up in the sub-
stitution. If it is present, we replace the current constraint with a new one; otherwise,
we extend the substitution:

<unify/Θ-tVar-case> ::=

[tVar (s) (type-case (optionof Term) (lookup l Θ)

[some (bound)

(unify/Θ (cons (eqCon bound r)

(rest cs))

Θ)]

[none ()

(unify/Θ (rest cs)

(extend+replace l r Θ))])]

The same logic applies when it is an expression designator:
<unify/Θ-tExp-case> ::=

[tExp (e) (type-case (optionof Term) (lookup l Θ)

[some (bound)

(unify/Θ (cons (eqCon bound r)

(rest cs))

Θ)]

[none ()

(unify/Θ (rest cs)

(extend+replace l r Θ))])]

If it is a base type, such as a number, then we examine the right-hand side. There
are four possibilities, for the four different kinds of terms:

• If it is a number, then we have an equation that claims that the type num is
the same as the type num, which is patently true. We can therefore ignore this
constraint—because it tells us nothing new—and move on to the remainder.

You should, of course, question why such a constraint would have come about in
the first place. Clearly, our constraint generator did not generate such constraints.
However, a prior extension to the current substitution might have resulted in this
situation. Indeed, in practice we will encounter several of these.
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• If it is a function type, then we clearly have a type error, because numeric and
function types are disjoint. Again, we would never have generated such a con-
straint directly, but it must have resulted from a prior substitution.

• It could have been one of the two variable kinds. However, we have carefully
arranged our constraint generator to never put these on the right-hand-side. Fur-
thermore, substitution will not introduce them on the right-hand-side, either.
Therefore, these two cases cannot occur.

This results in the following code:
<unify/Θ-tNum-case> ::=

[tNum () (type-case Term r

[tNum () (unify/Θ (rest cs) Θ)]

[else (error 'unify "number and something else")])]

Finally, we left with function types. Here the argument is almost exactly the same
as for numeric types.

<unify/Θ-tArrow-case> ::=

[tArrow (d r) (type-case Term r

[tArrow (d2 r2)

(unify/Θ (cons (eqCon d d2)

(cons (eqCon r r2)

cs))

Θ)]

[else (error 'unify "arrow and something else")])]

Note that we do not always shrink the size of the constraint set, so a simple ar-
gument does not suffice for proving termination. Instead, we must make an argument
based on the size of the constraint set, and on the size of the substitution (including the
number of variables in it).

The algorithm above is very general in that it works for all sorts of type terms,
not only numbers and functions. We have used numbers as a stand-in for all form of
base types; functions, similarly, stand for all constructed types, such as listof and
vectorof.

With this, we are done. Unification produces a substitution. We can now traverse
the substitution and find the types of all the expressions in the program, then insert the
type annotations accordingly. A theorem, which we will not prove here, dictates that
the success of the above process implies that the program would have typed-checked,
so we need not explicitly run the type-checker over this program.

Observe, however, that the nature of a type error has now changed dramatically.
Previously, we had a recursive-descent algorithm that walked a expressions using a
type environment. The bindings in the type environment were programmer-declared
types, and could hence be taken as (intended) authoritative specifications of types.
As a result, any mismatch was blamed on the expressions, and reporting type errors
was simple (and easy to understand). Here, however, a type error is a failure to no-
tify. The unification failure is based on events that occur at the confluence of two
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smart algorithms—constraint generation and unification—and hence are not necessar-
ily comprehensible to the programmer. In particular, the equational nature of these
constraints means that the location reported for the error, and the location of the “true”
error, could be quite far apart. As a result, producing better error messages remains an
active research area. In practice the

algorithm will
maintain metadata
on which program
source terms were
involved and
probably on the
history of
unification, to be
able to trace errors
back to the source
program.

Finally, remember that the constraints may not precisely dictate the type of all
variables. If the system of equations is over-constrained, then we get clashes, resulting
in type errors. If instead the system is under-constrained, that means we don’t have
enough information to make definitive statements about all expressions. For instance,
in the expression (lambda (x) x) we do not have enough constraints to indicate what
the type of x, and hence of the entire expression, must be. This is not an error; it simply
means that x is free to be any type at all. In other words, its type is “the type of x -> the
type of x” with no other constraints. The types of these underconstrained identifiers are
presented as type variables, so the above expression’s type might be reported as ('a
-> 'a).

The unification algorithm actually has a wonderful property: it automatically com-
putes the most general types for an expression, also known as principal types. That is,
any actual type the expression can have can be obtained by instantiating the inferred
type variables with actual types. This is a remarkable result: in another example of
computers beating humans, it says that no human can generate a more general type
than the above algorithm can!

Let-Polymorphism

Unfortunately, though these type variables are superficially similar to the polymor-
phism we had earlier [REF], they are not. Consider the following program:

(let ([id (lambda (x) x)])

(if (id true)

(id 5)

(id 6)))

If we write it with explicit type annotations, it type-checks:

(if ((id boolean) true)

((id number) 5)

((id number) 6))

However, if we use type inference, it does not! That is because the 'a’s in the type
of id unify either with boolean or with number, depending on the order in which the
constraints are processed. At that point id effectively becomes either a (boolean ->

boolean) or (number -> number) function. At the use of id of the other type, then,
we get a type error!

The reason for this is because the types we have inferred through unification are not
actually polymorphic. This is important to remember: just because you type variables,
you haven’t seen polymorphism! The type variables could be unified at the next use,
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at which point you end up with a mere monomorphic function. Rather, true polymor-
phism only obtains when you have true instantiation of type variables.

In languages with true polymorphism, then, constraint generation and unification
are not enough. Instead, languages like ML, Haskell, and even our typed programming
language, implement something colloquially called let-polymorphism. In this strategy,
when a term with type variables is bound in a lexical context, the type is automatically
promoted to be a quantified one. At each use, the term is effectively automatically
instantiated.

There are many implementation strategies that will accomplish this. The most naive
(and unsatisfying) is to merely copy the code of the bound identifier; thus, each use of
id above gets its own copy of (lambda (x) x), so each gets its own type variables.
The first might get the type ('a -> 'a), the second ('b -> 'b), the third ('c ->

'c), and so on. None of these type variables clash, so we get the effect of polymor-
phism. Obviously, this not only increases program size, it also does not work in the
presence of recursion. However, it gives us insight into a better solution: instead of
copying the code, why not just copy the type? Thus at each use, we create a renamed
copy of the inferred type: id’s ('a -> 'a) becomes ('b -> 'b) at the first use, and
so on, thus achieving the same effect as copying code but without its burdens. Because
all these strategies effectively mimic copying code, however, they only work within a
lexical context.

15.3.3 Union Types

Suppose we want to construct a list of zoo animals, of which there are many kinds: ar-
madillos, boa constrictors, and so on. Currently, we are forced to create a new datatype:

“In Texas, there
ain’t nothing in the
middle of the road
but a yellow line
and dead
armadillos.”—Jim
Hightower

(define-type Animal

[armadillo (alive? : boolean)]

[boa (length : number)])

and make a list of these: (listof Animal). The type Animal therefore represents
a “union” of armadillo and boa, except the only way to construct such unions is to
make a new type every time: if we want to represent the union of animals and plants,
we need

(define-type LivingThings

[animal (a : Animal)]

[plant (p : Plant)])

so an actual animal is now one extra “level” deep. These datatypes are called tagged
unions or discriminated unions, because we must introduce explicit tags (or discrim-
inators), such as animal and plant, to tell them apart. In turn, a structure can only
reside inside a datatype declaration; we have had to create datatypes with just one
variant, such as

(define-type Constraints

[eqCon (lhs : Term) (rhs : Term)])
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to hold the datatype, and everywhere we’ve had to use the type Constraints because
eqCon is not itself a type, only a variant that can be distinguished at run-time.

Either way, the point of a union type is to represent a disjunction, or “or”. A value’s
type is one of the types in the union. A value usually belongs to only one of the types
in the union, though this is a function of precisely how the union types are defined,
whether there are rules for normalizing them, and so on.

Structures as Types

A natural reaction to this might be, why not lift this restriction? Why not allow each
structure to exist on its own, and define a type to be a union of some collection of
structures? After all, in languages ranging from C to Racket, programmers can de-
fine stand-alone structures without having to wrap them in some other type with a tag
constructor! For instance, in raw Racket, we can write

(struct armadillo (alive?))

(struct boa (length))

and a comment that says

;; An Animal is either

;; - (armadillo <boolean>)

;; - (boa <number>)

but without enforced static types, the comparison is messy. However, we can more
directly compare with Typed Racket, a typed form of Racket that is built into DrRacket.
Here is the same typed code:

#lang typed/racket

(struct: armadillo ([alive? : Boolean]))

(struct: boa ([length : Real])) ;; feet

We can now define functions that consume values of type boa without any reference to
armadillos:

;; http://en.wikipedia.org/wiki/Boa_constrictor#Size_and_weight

(define: (big-one? [b : boa]) : Boolean

(> (boa-length b) 8))

In fact, if we apply this function to any other type, including an armadillo—(big-one?

(armadillo true))—we get a static error. This is because armadillos are no more
related to boas than numbers or strings are.

Of course, we can still define a union of these types:

(define-type Animal (U armadillo boa))

and functions over it:

165



(define: (safe-to-transport? [a : Animal]) : Boolean

(cond

[(boa? a) (not (big-one? a))]

[(armadillo? a) (armadillo-alive? a)]))

Whereas before we had one type with two variants, now we have three types. It just so
happens that two of the types form a union of convenience to define a third.

Untagged Unions

It might appear that we still need to have discriminative tags, but we don’t. In languages
with union types, the effect of the optionof type constructor is often obtained by
combining the intended return type with a disjoint one representing failure or noneness.
For instance, here is the moral equivalent of (optionof number):

(define-type MaybeNumber (U Number Boolean))

For that matter, Boolean may itself be a union of True and False, as it is in Typed
Racket, so a more accurate simulation of the option type would be:

(define-type MaybeNumber (U Number False))

More generally, we could define

(struct: none ())

(define-type (Maybeof T) (U T none))

which would work for all types, because none is a new, distinct type that cannot be
confused for any other. This gives us the same benefit as the optionof type, except
the value we want is not buried one level deep inside a some structure, but is rather
available immediately. For instance, consider member, which has this Typed Racket
type:

(All (a) (a (Listof a) -> (U False (Listof a))))

If the element is not found, member returns false. Otherwise, it returns the list starting
from the element onward (i.e., the first element of the list will be the desired element):
> (member 2 (list 1 2 3))

'(2 3)

To convert this to use Maybeof, we can write

(define: (t) (in-list? [e : t] [l : (Listof t)]) : (Maybeof (Listof t))

(let ([v (member e l)])

(if v

v

(none))))

which, if the element is not found, returns the value (none), but if it is found, still
returns a list
> (in-list? 2 (list 1 2 3))

'(2 3)

so that there is no need to remove the list from a some wrapper.
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Discriminating Untagged Unions

It’s one thing to put values into unions; we have to also consider how to take them
out, in a well-typed manner. In our ML-like type system, we use a stylized notation—
type-case in our language, pattern-matching in ML—to identify and pull apart the
pieces. In particular, when we write

(define (safe-to-transport? [a : Animal]) : boolean

(type-case Animal a

[armadillo (a?) a?]

[boa (l) (not (big-one? l))]))

the type of a remains the same in the entire expression. The identifiers a? and l are
bound to a boolean and numeric value, respectively, and big-one? must now be writ-
ten to consume those types, not armadillo and boa. Put in different terms, we cannot
have a function big-one? that consumes boas, because there is no such type.

In contrast, with union types, we do have the boa type. Therefore, we follow the
principle that the act of asking predicates of a value narrows the type. For instance, in
the cond case

[(boa? a) (not (big-one? a))]

though a begins as type Animal, after it passes the boa? test, the type checker is
expected to narrow its type to just the boa branch, so that the application of big-one?
is well-typed. In turn, in the rest of the conditional its type is not boa—in this case,
that leaves only one possibility, armadillo. This puts greater pressure on the type-
checker’s ability to test and recognize certain patterns—known as if-splitting—without
which it would be impossible to program with union types; but it can always default to
recognizing just those patterns that the ML-like system would have recognized, such
as pattern-matching or type-case.

Retrofitting Types

It is unsurprising that Typed Racket uses union types. They are especially useful when
retrofitting types onto existing programming languages whose programs were not de-
fined with an ML-like type discipline in mind, such as in scripting languages. A com-
mon principle of such retrofitted types is to statically catch as many dynamic exceptions
as possible. Of course, the checker must ultimately reject some programs, and if it re- Unless it

implements an
interesting idea
called soft typing,
which rejects no
programs but
provides
information about
points where the
program would not
have been typeable.

jects too many programs that would have run without an error, developers are unlikely
to adopt it. Because these programs were written without type-checking in mind, the
type checker may therefore need to go to heroic lengths to accept what are considered
reasonable idioms in the language.

Consider the following JavaScript function:
var slice = function (arr, start, stop) {

var result = [];

for (var i = 0; i <= stop - start; i++) {

result[i] = arr[start + i];
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}

return result;

}

It consumes an array and two indices, and produces the sub-array between those in-
dices. For instance, slice([5, 7, 11, 13], 0, 2) produces [5, 7, 11].

In JavaScript, however, developers are free to leave out any or all trailing arguments
to a function. Every elided argument is given a special value, undefined, and it is up
to the function to cope with this. For instance, a typical implementation of splice
would let the user drop the third argument; the following definition
var slice = function (arr, start, stop) {

if (typeof stop == "undefined")

stop = arr.length - 1;

var result = [];

for (var i = 0; i <= stop - start; i++) {

result[i] = arr[start + i];

}

return result;

}

automatically returns the subarray until the end of the array: thus, slice([5, 7, 11,

13], 2) returns [11, 13].
In Typed JavaScript, a programmer can explicitly indicate a function’s willingness Built at Brown by

Arjun Guha and
others. See our Web
site.

to accept fewer arguments by giving a parameter the type U Undefined, giving it the
type

∀ t : (Array[t] * Int * (Int U Undefined) -> Array[t])

In principle, this means there is a potential type error at the expression stop - start,
because stop may not be a number. However, the assignment to stop sets it to a
numeric type precisely when it was elided by the user. In other words, in all control
paths, stop will eventually have a numeric type before the subtraction occurs, so this
function is well-typed. Of course, this requires the type-checker to be able to reason
about both control-flow (through the conditional) and state (through the assignment)
to ensure that this function is well-typed; but Typed JavaScript can, and can thus bless
functions such as this.

Design Choices

In languages with union types, it is common to have

• Stand-alone structure types (often represented using classes), rather than datatypes
with variants.

• Ad hoc collections of structures to represent particular types.

• The use of sentinel values to represent failure.

To convert programs written in this style to an ML-like type discipline would be ex-
tremely onerous. Therefore, many retrofitted type systems adopt union types to ease
the process of typing.
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Of the three properties above, the first seems morally neutral, but the other two
warrant more discussion. We will address them in reverse order.

• Let’s tackle sentinels first. In many cases, sentinels ought to be replaced with
exceptions, but in many languages, exceptions can be very costly. Thus, de-
velopers prefer to make a distinction between truly exceptional situations—that
ought not occur—and situations that are expected in the normal course of oper-
ation. Checking whether an element is in a list and failing to find it is clearly in
the latter category (if we already knew the element was or wasn’t present, there
would be no need to run this predicate). In the latter case, using sentinels is
reasonable.

However, we must square this with the observation that failure to check for ex-
ceptional sentinel values is a common source of error—and indeed, security
flaws—in C programs. This is easy to reconcile. In C, the sentinel is of the
same type (or at least, effectively the same type) as the regular return value, and
furthermore, there are no run-time checks. Therefore, the sentinel can be used as
a legitimate value without a type error. As a result, a sentinel of 0 can be treated
as an address into which to allocate data, thus potentially crashing the system. In
contrast, our sentinel is of a truly new type that cannot be used in any computa-
tion. We can easily reason about this by observing that no existing functions in
our language consume values of type none.

• Setting aside the use of “ad hoc”, which is pejorative, are different groupings of
a set of structures a good idea? In fact, such groupings occur even in programs
using an ML-like discipline, when programmers want to carve different sub-
universes of a larger one. For instance, ML programmers use a type like

(define-type SExp

[numSexp (n : number)]

[strSexp (s : string)]

[listSexp (l : (listof SExp))])

to represent s-expressions. If a function now operates on just some subset of
these terms—say just numbers and lists of numbers—they must create a fresh
type, and convert values between the two types even though their underlying
representations are essentially identical. As another example, consider the set of
CPS expressions. This is clearly a subset of all possible expressions, but if we
were to create a fresh datatype for it, we would not be able to use any existing
programs that process expressions—such as the interpreter.

In other words, union types appear to be a reasonable variation on the ML-style
type system we have seen earlier. However, even within union types there are design
variations, and these have consequences. For instance, can the type system create new
unions, or are user-defined (and named) unions permitted? That is, can an expression
like this
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(if (phase-of-the-moon)

10

true)

be allowed to type (to (U Number Boolean)), or is it a type error to introduce unions
that have not previously been named and explicitly identified? Typed Racket provides
the former: it will construct truly ad hoc unions. This is arguably better for importing
existing code into a typed setting, because it is more flexible. However, it is less clear
whether this is a good design for writing new code, because unions the programmer did
not intend can occur and there is no way to prevent them. This offers an unexplored
corner in the design space of programming languages.

15.3.4 Nominal Versus Structural Systems

In our initial type-checker, two types were considered equivalent if they had the same
structure. In fact, we offered no mechanism for naming types at all, so it is not clear
what alternative we had.

Now consider Typed Racket. A developer can write

(define-type NB1 (U Number Boolean))

(define-type NB2 (U Number Boolean))

followed by

(define: v : NB1 5)

Suppose the developer also defines the function

(define: (f [x : NB2]) : NB2 x)

and tries to apply f to v, i.e., (f v): should this application type or not?
There are two perfectly reasonable interpretations. One is to say that v was declared

to be of type NB1, which is a different name than NB2, and hence should be considered
a different type, so the above application should result in an error. Such a system is
called nominal, because the name of a type is paramount for determining type equality.

In contrast, another interpretation is that because the structure of NB1 and NB2 are
identical, there is no way for a developer to write a program that behaves differently
on values of these two types, so these two types should be considered identical. Such If you want to get

especially careful,
you would note that
there is a difference
between being
considered the same
and actually being
the same. We won’t
go into this issue
here, but consider
the implication for a
compiler writer
choosing
representations of
values, especially in
a language that
allows run-time
inspection of the
static types of
values.

a type system is called structural, and would successfully type the above expression.
(Typed Racket follows a structural discipline, again to reduce the burden of importing
existing untyped code, which—in Racket—is usually written with a structural inter-
pretation in mind. In fact, Typed Racket not only types (f v), it prints the result as
having type NB1, despite the return type annotation on f!)

The difference between nominal and structural typing is most commonly con-
tentious in object-oriented languages, and we will return to this issue briefly later
[REF]. However, the point of this section is to illustrate that these questions are not in-
trinsically about “objects”. Any language that permits types to be named—as all must,
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for programmer sanity—must contend with this question: is naming merely a conve-
nience, or are the choices of names intended to be meaningful? Choosing the former
answer leads to structural typing, while choosing the latter leads down the nominal
path.

15.3.5 Intersection Types

Since we’ve just explored union types, you must naturally wonder whether there are
also intersection types. Indeed there are.

If a union type means that a value (of that type) belongs to one of the types in
the union, an intersection type clearly means the value belongs to all the types in the
intersection: a conjunction, or “and”. This might seem strange: how can a value belong
to more than one type?

As a concrete answer, consider overloaded functions. For instance, in some lan-
guages + operates on both numbers and strings; given two numbers it produces a num-
ber, and given two strings it produces a string. In such a language, what is the proper
type for +? It is not (number number -> number) alone, because that would reject
its use on strings. By the same reasoning, it is not (string string -> string)

alone either. It is not even

(U (number number -> number)

(string string -> string))

because + is not just one of these functions: it truly is both of them. We could ascribe
the type

((number U string) (number U string) -> (number U string))

reflecting the fact that each argument, and the result, can be only one of these types,
not both. Doing so, however, leads to a loss of precision.

Do Now!

In what way does this type lose precision?

Observe that with this type, the return type on all invocations is (number U string).
Thus, on every return we must distinguish beween numeric and string returns, or else
we will get a type error. Thus, even though we know that if given two numeric argu-
ments we will get a numeric result, this information is lost to the type system.

More subtly, this type permits each argument’s type to be chosen independently of
the other. Thus, according to this type, the invocation (+ 3 "x") is perfectly valid
(and produces a value of type (number U string)). But of course the addition oper-
ation we have specified is not defined for these inputs at all!

Thus the proper type to ascribe this form of addition is

(∧ (number number -> number)

(string string -> string))
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where ∧ should be reminiscent of the conjunction operator in logic. This permits invo-
cation with two numbers or two strings, but nothing else. An invocation with two num-
bers has a numeric result type; one with two strings has a string result type; and nothing
else. This corresponds precisely to our intended behavior for overloading (sometimes
also called ad hoc polymorphism). Observe that this only handles a finite number of
overloaded cases.

15.3.6 Recursive Types

Now that we’ve seen union types, it pays to return to our original recursive datatype
formulation. If we accept the variants as type constructors, can we write the recursive
type as a union over these? For instance, returning to BTnum, shouldn’t we be able to
describe it as equivalent to

((BTmt) U (BTnd number BTnum BTnum))

thereby showing that BTmt is a zero-ary constructor, and BTnd takes three parameters?
Except, what are the types of those three parameters? In the type we’ve written above,
BTnum is either built into the type language (which is unsatisfactory) or unbound. Per-
haps we mean

BTnum = ((BTmt) U (BTnd number BTnum BTnum))

Except now we have an equation that has no obvious solution (remember ω?).
This situation should be familiar from recursion in values [REF]. Then, we invented

a recursive function constructor (and showed its implementation) to circumvent this
problem. We similarly need a recursive type constructor. This is conventionally called
µ (the Greek letter “mu”). With it, we would write the above type as

µ BTnum : ((BTmt) U (BTnd number BTnum BTnum))

µ is a binding construct; it binds BTnum to the entire type written after it, including the
recursive binding of BTnum itself. In practice, of course, this entire recursive type is the
one we wish to call BTnum:

BTnum = µ BTnum : ((BTmt) U (BTnd number BTnum BTnum))

Though this looks like a circular definition, notice that the name BTnum on the right
does not depend on the one to the left of the equation: i.e., we could rewrite this as

BTnum = µ T : ((BTmt) U (BTnd number T T))

In other words, this definition of BTnum truly can be thought of as syntactic sugar and
replaced everywhere in the program without fear of infinite regress.

At a semantic level, there are usually two very different ways of thinking about the
meaning of types bound by µ: they can be interpreted as isorecursive or equirecursive.
The distinction between these is, however, subtle and beyond the scope of this chapter. This material is

covered especially
well in Pierce’s
book.

It suffices to note that a recursive type can be treated as equivalent to its unfolding. For
instance, if we define a numeric list type as
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NumL = µ T : ((MtL) U (ConsL number T))

then

µ T : ((MtL) U (ConsL number T))

= (MtL) U (ConsL number (µ T : ((MtL) U (ConsL number T))))

= (MtL) U (ConsL number (MtL))

U (ConsL number (ConsL number (µ T : ((MtL) U (ConsL number T)))))

and so on (iso- and equi-recursiveness differ in precisely what the notion of equality
is: definitional equality or isomorphism). At each step we simply replace the T pa-
rameter with the entire type. As with value recursion, this means we can “get another”
ConsL constructor upon demand. Put differently, the type of a list can be written as the
union of zero or arbitrarily many elements; this is the same as the type that consists of
zero, one, or arbitrarily many elements; and so on. Any lists of numbers fits all (and
precisely) these types.

Observe that even with this informal understanding of µ, we can now provide a
type to ω, and hence to Ω.

Exercise

Ascribe types to ω and Ω.

15.3.7 Subtyping

Imagine we have a typical binary tree definition; for simplicity, we’ll assume that all
the values are numbers. We will write this in Typed Racket to illustrate a point:

#lang typed/racket

(define-struct: mt ())

(define-struct: nd ([v : Number] [l : BT] [r : BT]))

(define-type BT (U mt nd))

Now consider some concrete tree values:
> (mt)

- : mt

#<mt>

> (nd 5 (mt) (mt))

- : nd

#<nd>

Observe that each structure constructor makes a value of its own type, not a value of
type BT. But consider the expression (nd 5 (mt) (mt)): the definition of nd declares
that the sub-trees must be of type BT, and yet we are able to successfully give it values
of type mt.

Obviously, it is not coincidental that we have defined BT in terms of mt and nd.
However, it does indicate that when type-checking, we cannot simply be checking for
function equality, at least not as we have so far. Instead, we must be checking that one
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type “fits into” the other. This notion of fitting is called subtyping (and the act of being
fit, subsumption).

The essence of subtyping is to define a relation, usually denoted by <:, that relates
pairs of types. We say S <: T if a value of type S can be given where a value of type
T is expected: in other words, subtyping formalizes the notion of substitutability (i.e.,
anywhere a value of type T was expected, it can be replaced with—substituted by—a
value of type S). When this holds, S is called the subtype and T the supertype. It is
useful (and usually accurate) to take a subset interpretation: if the values of S are a
subset of T, then an expression expecting T values will not be unpleasantly surprised to
receive only S values.

Subtyping has a pervasive effect on the type system. We have to reexamine every
kind of type and understand its interaction with subtyping. For base types, this is usu-
ally quite obvious: disjoint types like number, string, etc., are all unrelated to each
other. (In languages where one base type is used to represent another—for instance,
in some scripting languages numbers are merely strings written with a special syntax,
and in other languages, booleans are merely numbers—there might be subtyping rela-
tionships even between base types, but these are not common.) However, we do have
to consider how subtyping interacts with every single compound type constructor.

In fact, even our very diction about types has to change. Suppose we have an
expression of type T. Normally, we would say that it produces values of type T. Now,
we should be careful to say that it produces values of up to or at most T, because it may
only produce values of a subtype of T. Thus every reference to a type should implicitly
be cloaked in a reference to the potential for subtyping. To avoid pestering you I will
refrain from doing this, but be wary that it is possible to make reasoning errors by not
keeping this implicit interpretation in mind.

Unions

Let us see how unions interact with subtyping. Clearly, every sub-union is a subtype of
the entire union. In our running example, clearly every mt value is also a BT; likewise
for nd. Thus,

mt <: BT

nd <: BT

As a result, (mt) also has type BT, thus enabling the expression (nd 5 (mt) (mt))

to itself type, and to have the type nd—and hence, also the type BT. In general,

S <: (S U T)

T <: (S U T)

(we write what seems to be the same rule twice just to make clear it doesn’t matter
which “side” of the union the subtype is on). This says that a value of S can be thought
of as a value of S U T, because any expression of type S U T can indeed contain a
value of type S.
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Intersections

While we’re at it, we should also briefly visit intersections. As you might imagine,
intersections behave dually:

(S ∧ T) <: S

(S ∧ T) <: T

To convince yourself of this, take the subset interpretation: if a value is both S and T,
then clearly it is either one of them.

Do Now!

Why are the following two not valid subsumptions?

1. (S U T) <: S

2. T <: (S ∧ T)

The first is not valid because a value of type T is a perfectly valid element of type (S
U T). For instance, a number is a member of type (string U number). However, a
number cannot be supplied where a value of type string is expected.

As for the second, in general, a value of type T is not also a value of type S. Any
consumer of a (S ∧ T) value is expecting to be able to treat it as both a T and a S,
and the latter is not justified. For instance, given our overloaded + from before, if T
is (number number -> number), then a function of this type will not know how to
operate on strings.

Functions

We have seen one more constructor: functions. We must therefore determine the rules We have also seen
parametric
datatypes. In this
edition, exploring
subtyping for them
is left as an exercise
for the reader.

for subtyping when either type can be a function. Since we usually assume functions
are disjoint from all other types, we therefore only need to consider when one function
type is a subtype of another: i.e., when is

(S1 -> T1) <: (S2 -> T2)

? For convenience, let us call the type (S1 -> T1) as f1, and (S2 -> T2) as f2. The
question then is, if an expression is expecting functions of the f2 type, when can we
safely give it functions with the f1 type? It is easiest to think through this using the
subset interpretation.

Consider a use of the f2 type. It returns values of type T2. Thus, the context
surrounding the function application is satisfied with values of type T2. Clearly, if
T1 is the same as T2, the use of f2 would continue to type; similarly, if T1 consists
of a subset of T2 values, it would still be fine. The only problem is if T1 has more
values than T2, because the context would then encounter unexpected values that would
result in undefined behavior. In other words, we need that T1 <: T2. Observe that
the “direction” of containment is the same as that for the entire function type; this is
called covariance (both vary in the same direction). This is perhaps precisely what you
expected.
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By the same token, you might expect covariance in the argument position as well:
namely, that S1 <: S2. This would be predictable, and wrong. Let’s see why.

An application of a function with f2 type is providing parameter values of type S2.
Suppose we instead substitute the function with one of type f1. If we had that S1 <:

S2, that would mean that the new function accepts only values of typeS1—a strictly
smaller set. That means there may be some inputs—specifically those in S2 that are
not in S1—that the application is free to provide on which the substituted function is
not defined, again resulting in undefined behavior. To avoid this, we have to make the
subsumption go in the other direction: the substituting function should accept at least
as many inputs as the one it replaces. Thus we need S2 <: S1, and say the function
position is contravariant: it goes against the direction of subtyping.

Putting together these two observations, we obtain a subtyping rule for functions
(and hence also methods):

(S2 <: S1) and (T1 <: T2) => (S1 -> T1) <: (S2 -> T2)

Implementing Subtyping

Of course, these rules assume that we have modified the type-checker to respect sub-
typing. The essence of subtyping is a rule that says, if an expression e is of type S,
and S <: T, then e also has type T. While this sounds intuitive, it is also immediately
problematic for two reasons:

• Until now all of our type rules have been syntax-driven, which is what enabled
us to write a recursive-descent type-checker. Now, however, we have a rule that
applies to all expressions, so we can no longer be sure when to apply it.

• There could be many levels of subtyping. As a result, it is no longer obvious
when to “stop” subtyping. In particular, whereas before type-checking was able
to calculate the type of an expression, now we have many possible types for each
expression; if we return the “wrong” one, we might get a type error (due to that
not being the type expected by the context) even though there exists some other
type that was the one expected by the context.

What these two issues point to is that the description of subtyping we are giving here
is fundamentally declarative: we are saying what must be true, but not showing how
to turn it into an algorithm. For each actual type language, there is a less or more
interesting problem in turning this into algorithmic subtyping: an actual algorithm that
realizes a type-checker (ideally one that types exactly those programs that would have
typed under the declarative regime, i.e., one that is both sound and complete).

15.3.8 Object Types

As we’ve mentioned earlier, types for objects are typically riven into two camps: nom-
inal and structural. Nominal types are familiar to most programmers through Java, so
I won’t say much about them here. Structural types for objects dictate that an object’s
type is itself a structured object, consisting of names of fields and their types. For
instance, an object with two methods, add1 and sub1 [REF], would have the type
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{add1 : (number -> number), sub1 : (number -> number)}

(For future reference, let’s call this type addsub.) Type-checking would then follow
along predictable lines: for field access we would simply ensure the field exists and
would use its declared type for the dereference expression; for method invocation we
would have to ensure not only that the member exists but that it has a function type. So
far, so straightforward.

Object types become complicated for many reasons: Whole books are
therefore devoted to
this topic. Abadi
and Carelli’s A
Theory of Objects is
important but now
somewhat dated.
Bruce’s
Foundations of
Object-Oriented
Languages: Types
and Semantics is
more modern, and
also offers more
gentle exposition.
Pierce covers all the
necessary theory
beautifully.

• Self-reference. What is the type of self? It must the same type as the object
itself, since any operation that can be applied to the object from the “outside”
can also be applied to it from the “inside” using self. This means object types
are recursive types.

• Access controls: private, public, and other restrictions. These lead to a distinc-
tion in the type of an object from “outside” and “inside”.

• Inheritance. Not only do we have to give a type to the parent object(s), what is
visible along inheritance paths may, again, differ from what is visible from the
“outside”.

• The interplay between multiple-inheritance and subtyping.

• The relationship between classes and interfaces in languages like Java, which
has a run-time cost.

• Mutation.

• Casts.

• Snakes on a plane.

and so on. Some of these problems simplify in the presence of nominal types, because
given a type’s name we can determine everything about its behavior (the type decla-
rations effectively become a dictionary through which the object’s description can be
looked up on demand), which is one argument in favor of nominal typing. Note that Java’s

approach is not the
only way to build a
nominal type
system. We have
already argued that
Java’s class system
needlessly restricts
the expressive
power of
programmers
[REF]; in turn,
Java’s nominal type
system needlessly
conflates types
(which are interface
descriptions) and
implementations. It
is, therefore,
possible to have
much better
nominal type
systems than Java’s.
Scala, for instance,
takes significant
steps in this
direction.

A full exposition of these issues will take much more room than we have here.
For now, we will limit ourselves to one interesting question. Remember that we said
subtyping forces us to consider every type constructor? The structural typing of objects
introduces one more: the object type constructor. We therefore have to understand its
interaction with subtyping.

Before we do, let’s make sure we understand what an object type even means.
Consider the type addsub above, which lists two methods. What objects can be given
this type? Obviously, an object with just those two methods, with precisely those two
types, is eligible. Equally obviously, an object with only one and not the other of those
two methods, no matter what else it has, is not. But the phrase “no matter what else
it has” is meant to be leading. What if an object represents an arithmetic package that
also contains methods + and *, in addition to the above two (all of the appropriate
type)? In that case we certainly have an object that can supply those two methods,
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so the arithmetic package certainly has type addsub. Its other methods are simply
inaccessible using type addsub.

Let us write out the type of this package, in full, and call this type as+*:

{add1 : (number -> number),

sub1 : (number -> number),

+ : (number number -> number),

* : (number number -> number)}

What we have just argued is that an object of type as+* should also be allowed to claim
the type addsub, which means it can be substituted in any context expecting a value of
type addsub. In other words, we have just said that we want as+* <: addsub:

{add1 : (number -> number), {add1 : (number -> number),

sub1 : (number -> number), <: sub1 : (number -> number)}

+ : (number number -> number),

* : (number number -> number)}

This may momentarily look confusing: we’ve said that subtyping follows set inclusion,
so we would expect the smaller set on the left and the larger set on the right. Yet, it
looks like we have a “larger type” (certainly in terms of character count) on the left and
a “smaller type” on the right.

To understand why this is sound, it helps to develop the intuition that the “larger”
the type, the fewer values it can have. Every object that has the four methods on the
left clearly also has the two methods on the right. However, there are many objects
that have the two methods on the right that fail to have all four on the left. If we think
of a type as a constraint on acceptable value shapes, the “bigger” type imposes more
constraints and hence admits fewer values. Thus, though the types may appear to be of
the wrong sizes, everything is well because the sets of values they subscribe are of the
expected sizes.

More generally, this says that by dropping fields from an object’s type, we obtain
a supertype. This is called width subtyping, because the subtype is “wider”, and we
move up the subtyping hierarchy by adjusting the object’s “width”. We see this even
in the nominal world of Java: as we go up the inheritance chain a class has fewer and
fewer methods and fields, until we reach Object, the supertype of all classes, which
has the fewest. Thus for all class types C in Java, C <: Object. Somewhat

confusingly, the
terms narrowing
and widening are
sometimes used, but
with what some
might consider the
opposite meaning.
To widen is to go
from subtype to
supertype, because
it goes from a
“narrower”
(smaller) to a
“wider” (bigger)
set. These terms
evolved
independently, but
unfortunately not
consistently.

As you might expect, there is another important form of subtyping, which is within
a given member. This simply says that any particular member can be subsumed to a
supertype in its corresponding position. For obvious reasons, this form is called depth
subtyping.

Exercise

Construct two examples of depth subtyping. In one, give the field itself
an object type, and use width subtyping to subtype that field. In the other,
give the field a function type.

Java has limited depth subtyping, preferring types to be invariant down the object
hierarchy because this is a safe option for conventional mutation.
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