
Chapter 3

Geometric Representations and
Transformations

This chapter provides important background material that will be needed for Part
II. Formulating and solving motion planning problems require defining and manip-
ulating complicated geometric models of a system of bodies in space. Section 3.1
introduces geometric modeling, which focuses mainly on semi-algebraic modeling
because it is an important part of Chapter 6. If your interest is mainly in Chapter
5, then understanding semi-algebraic models is not critical. Sections 3.2 and 3.3
describe how to transform a single body and a chain of bodies, respectively. This
will enable the robot to “move.” These sections are essential for understanding
all of Part II and many sections beyond. It is expected that many readers will al-
ready have some or all of this background (especially Section 3.2, but it is included
for completeness). Section 3.4 extends the framework for transforming chains of
bodies to transforming trees of bodies, which allows modeling of complicated sys-
tems, such as humanoid robots and flexible organic molecules. Finally, Section 3.5
briefly covers transformations that do not assume each body is rigid.

3.1 Geometric Modeling

A wide variety of approaches and techniques for geometric modeling exist, and
the particular choice usually depends on the application and the difficulty of the
problem. In most cases, there are generally two alternatives: 1) a boundary repre-
sentation, and 2) a solid representation. Suppose we would like to define a model
of a planet. Using a boundary representation, we might write the equation of a
sphere that roughly coincides with the planet’s surface. Using a solid representa-
tion, we would describe the set of all points that are contained in the sphere. Both
alternatives will be considered in this section.

The first step is to define the world W for which there are two possible choices:
1) a 2D world, in which W = R2, and 2) a 3D world, in which W = R3. These
choices should be sufficient for most problems; however, one might also want to
allow more complicated worlds, such as the surface of a sphere or even a higher
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dimensional space. Such generalities are avoided in this book because their current
applications are limited. Unless otherwise stated, the world generally contains two
kinds of entities:

1. Obstacles: Portions of the world that are “permanently” occupied, for
example, as in the walls of a building.

2. Robots: Bodies that are modeled geometrically and are controllable via a
motion plan.

Based on the terminology, one obvious application is to model a robot that moves
around in a building; however, many other possibilities exist. For example, the
robot could be a flexible molecule, and the obstacles could be a folded protein.
As another example, the robot could be a virtual human in a graphical simulation
that involves obstacles (imagine the family of Doom-like video games).

This section presents a method for systematically constructing representations
of obstacles and robots using a collection of primitives. Both obstacles and robots
will be considered as (closed) subsets of W . Let the obstacle region O denote the
set of all points in W that lie in one or more obstacles; hence, O ⊆ W . The
next step is to define a systematic way of representing O that has great expressive
power while being computationally efficient. Robots will be defined in a similar
way; however, this will be deferred until Section 3.2, where transformations of
geometric bodies are defined.

3.1.1 Polygonal and Polyhedral Models

In this and the next subsection, a solid representation of O will be developed in
terms of a combination of primitives. Each primitive Hi represents a subset of W
that is easy to represent and manipulate in a computer. A complicated obstacle
region will be represented by taking finite, Boolean combinations of primitives.
Using set theory, this implies that O can also be defined in terms of a finite
number of unions, intersections, and set differences of primitives.

Convex polygons First consider O for the case in which the obstacle region is
a convex, polygonal subset of a 2D world, W = R2. A subset X ⊂ Rn is called
convex if and only if, for any pair of points in X, all points along the line segment
that connects them are contained in X. More precisely, this means that for any
x1, x2 ∈ X and λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ X. (3.1)

Thus, interpolation between x1 and x2 always yields points in X. Intuitively, X
contains no pockets or indentations. A set that is not convex is called nonconvex
(as opposed to concave, which seems better suited for lenses).

A boundary representation of O is an m-sided polygon, which can be described
using two kinds of features: vertices and edges. Every vertex corresponds to a
“corner” of the polygon, and every edge corresponds to a line segment between a
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Figure 3.1: A convex polygonal region can be identified by the intersection of
half-planes.

pair of vertices. The polygon can be specified by a sequence, (x1, y1), (x2, y2), . . .,
(xm, ym), of m points in R2, given in counterclockwise order.

A solid representation of O can be expressed as the intersection of m half-
planes. Each half-plane corresponds to the set of all points that lie to one side
of a line that is common to a polygon edge. Figure 3.1 shows an example of an
octagon that is represented as the intersection of eight half-planes.

An edge of the polygon is specified by two points, such as (x1, y1) and (x2, y2).
Consider the equation of a line that passes through (x1, y1) and (x2, y2). An
equation can be determined of the form ax + by + c = 0, in which a, b, c ∈ R

are constants that are determined from x1, y1, x2, and y2. Let f : R2 → R be
the function given by f(x, y) = ax + by + c. Note that f(x, y) < 0 on one side
of the line, and f(x, y) > 0 on the other. (In fact, f may be interpreted as a
signed Euclidean distance from (x, y) to the line.) The sign of f(x, y) indicates a
half-plane that is bounded by the line, as depicted in Figure 3.2. Without loss of
generality, assume that f(x, y) is defined so that f(x, y) < 0 for all points to the
left of the edge from (x1, y1) to (x2, y2) (if it is not, then multiply f(x, y) by −1).

Let fi(x, y) denote the f function derived from the line that corresponds to
the edge from (xi, yi) to (xi+1, yi+1) for 1 ≤ i < m. Let fm(x, y) denote the line
equation that corresponds to the edge from (xm, ym) to (x1, y1). Let a half-plane
Hi for 1 ≤ i ≤ m be defined as a subset of W :

Hi = {(x, y) ∈ W | fi(x, y) ≤ 0}. (3.2)

Above, Hi is a primitive that describes the set of all points on one side of the
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Figure 3.2: The sign of the f(x, y) partitions R2 into three regions: two half-planes
given by f(x, y) < 0 and f(x, y) > 0, and the line f(x, y) = 0.

line fi(x, y) = 0 (including the points on the line). A convex, m-sided, polygonal
obstacle region O is expressed as

O = H1 ∩H2 ∩ · · · ∩Hm. (3.3)

Nonconvex polygons The assumption that O is convex is too limited for most
applications. Now suppose that O is a nonconvex, polygonal subset of W . In this
case O can be expressed as

O = O1 ∪ O2 ∪ · · · ∪ On, (3.4)

in which each Oi is a convex, polygonal set that is expressed in terms of half-
planes using (3.3). Note that Oi and Oj for i 6= j need not be disjoint. Using this
representation, very complicated obstacle regions in W can be defined. Although
these regions may contain multiple components and holes, if O is bounded (i.e., O
will fit inside of a big enough rectangular box), its boundary will consist of linear
segments.

In general, more complicated representations of O can be defined in terms of
any finite combination of unions, intersections, and set differences of primitives;
however, it is always possible to simplify the representation into the form given
by (3.3) and (3.4). A set difference can be avoided by redefining the primitive.
Suppose the model requires removing a set defined by a primitiveHi that contains

1

fi(x, y) < 0. This is equivalent to keeping all points such that fi(x, y) ≥ 0, which is
equivalent to −fi(x, y) ≤ 0. This can be used to define a new primitive H ′

i, which
when taken in union with other sets, is equivalent to the removal of Hi. Given
a complicated combination of primitives, once set differences are removed, the
expression can be simplified into a finite union of finite intersections by applying
Boolean algebra laws.

1In this section, we want the resulting set to include all of the points along the boundary.
Therefore, < is used to model a set for removal, as opposed to ≤.
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Note that the representation of a nonconvex polygon is not unique. There
are many ways to decompose O into convex components. The decomposition
should be carefully selected to optimize computational performance in whatever
algorithms that model will be used. In most cases, the components may even be
allowed to overlap. Ideally, it seems that it would be nice to represent O with the
minimum number of primitives, but automating such a decomposition may lead to
an NP-hard problem (see Section 6.5.1 for a brief overview of NP-hardness). One
efficient, practical way to decompose O is to apply the vertical cell decomposition
algorithm, which will be presented in Section 6.2.2

Defining a logical predicate What is the value of the previous representation?
As a simple example, we can define a logical predicate that serves as a collision
detector. Recall from Section 2.4.1 that a predicate is a Boolean-valued function.
Let φ be a predicate defined as φ : W → {true, false}, which returns true for
a point in W that lies in O, and false otherwise. For a line given by f(x, y) =
0, let e(x, y) denote a logical predicate that returns true if f(x, y) ≤ 0, and
false otherwise.

A predicate that corresponds to a convex polygonal region is represented by a
logical conjunction,

α(x, y) = e1(x, y) ∧ e2(x, y) ∧ · · · ∧ em(x, y). (3.5)

The predicate α(x, y) returns true if the point (x, y) lies in the convex polygonal
region, and false otherwise. An obstacle region that consists of n convex polygons
is represented by a logical disjunction of conjuncts,

φ(x, y) = α1(x, y) ∨ α2(x, y) ∨ · · · ∨ αn(x, y). (3.6)

Although more efficient methods exist, φ can check whether a point (x, y) lies
in O in time O(n), in which n is the number of primitives that appear in the
representation of O (each primitive is evaluated in constant time).

Note the convenient connection between a logical predicate representation and
a set-theoretic representation. Using the logical predicate, the unions and inter-
sections of the set-theoretic representation are replaced by logical ORs and ANDs.
It is well known from Boolean algebra that any complicated logical sentence can
be reduced to a logical disjunction of conjunctions (this is often called “sum of
products” in computer engineering). This is equivalent to our previous statement
that O can always be represented as a union of intersections of primitives.

Polyhedral models For a 3D world, W = R3, and the previous concepts can
be nicely generalized from the 2D case by replacing polygons with polyhedra and
replacing half-plane primitives with half-space primitives. A boundary represen-
tation can be defined in terms of three features: vertices, edges, and faces. Every
face is a “flat” polygon embedded in R3. Every edge forms a boundary between
two faces. Every vertex forms a boundary between three or more edges.
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(a) (b)

Figure 3.3: (a) A polyhedron can be described in terms of faces, edges, and vertices.
(b) The edges of each face can be stored in a circular list that is traversed in
counterclockwise order with respect to the outward normal vector of the face.

Several data structures have been proposed that allow one to conveniently
“walk” around the polyhedral features. For example, the doubly connected edge
list [264] data structure contains three types of records: faces, half-edges, and
vertices. Intuitively, a half-edge is a directed edge. Each vertex record holds the
point coordinates and a pointer to an arbitrary half-edge that touches the vertex.
Each face record contains a pointer to an arbitrary half-edge on its boundary. Each
face is bounded by a circular list of half-edges. There is a pair of directed half-edge
records for each edge of the polyhedon. Each half-edge is shown as an arrow in
Figure 3.3b. Each half-edge record contains pointers to five other records: 1) the
vertex from which the half-edge originates; 2) the “twin” half-edge, which bounds
the neighboring face, and has the opposite direction; 3) the face that is bounded by
the half-edge; 4) the next element in the circular list of edges that bound the face;
and 5) the previous element in the circular list of edges that bound the face. Once
all of these records have been defined, one can conveniently traverse the structure
of the polyhedron.

Now consider a solid representation of a polyhedron. Suppose that O is a con-
vex polyhedron, as shown in Figure 3.3. A solid representation can be constructed
from the vertices. Each face of O has at least three vertices along its boundary.
Assuming these vertices are not collinear, an equation of the plane that passes
through them can be determined of the form

ax+ by + cz + d = 0, (3.7)

in which a, b, c, d ∈ R are constants.
Once again, f can be constructed, except now f : R3 → R and

f(x, y, z) = ax+ by + cz + d. (3.8)
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Let m be the number of faces. For each face of O, a half-space Hi is defined as a
subset of W :

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0}. (3.9)

It is important to choose fi so that it takes on negative values inside of the poly-
hedron. In the case of a polygonal model, it was possible to consistently define
fi by proceeding in counterclockwise order around the boundary. In the case of
a polyhedron, the half-edge data structure can be used to obtain for each face
the list of edges that form its boundary in counterclockwise order. Figure 3.3b
shows the edge ordering for each face. For every edge, the arrows point in opposite
directions, as required by the half-edge data structure. The equation for each face
can be consistently determined as follows. Choose three consecutive vertices, p1,
p2, p3 (they must not be collinear) in counterclockwise order on the boundary of
the face. Let v12 denote the vector from p1 to p2, and let v23 denote the vector
from p2 to p3. The cross product v = v12 × v23 always yields a vector that points
out of the polyhedron and is normal to the face. Recall that the vector [a b c]
is parallel to the normal to the plane. If its components are chosen as a = v[1],
b = v[2], and c = v[3], then f(x, y, z) ≤ 0 for all points in the half-space that
contains the polyhedron.

As in the case of a polygonal model, a convex polyhedron can be defined as
the intersection of a finite number of half-spaces, one for each face. A nonconvex
polyhedron can be defined as the union of a finite number of convex polyhedra.
The predicate φ(x, y, z) can be defined in a similar manner, in this case yielding
true if (x, y, z) ∈ O, and false otherwise.

3.1.2 Semi-Algebraic Models

In both the polygonal and polyhedral models, f was a linear function. In the
case of a semi-algebraic model for a 2D world, f can be any polynomial with real-
valued coefficients and variables x and y. For a 3D world, f is a polynomial with
variables x, y, and z. The class of semi-algebraic models includes both polygonal
and polyhedral models, which use first-degree polynomials. A point set determined
by a single polynomial primitive is called an algebraic set; a point set that can be
obtained by a finite number of unions and intersections of algebraic sets is called
a semi-algebraic set.

Consider the case of a 2D world. A solid representation can be defined using
algebraic primitives of the form

H = {(x, y) ∈ W | f(x, y) ≤ 0}. (3.10)

As an example, let f = x2 + y2 − 4. In this case, H represents a disc of radius
2 that is centered at the origin. This corresponds to the set of points (x, y) for
which f(x, y) ≤ 0, as depicted in Figure 3.4a.

Example 3.1 (Gingerbread Face) Consider constructing a model of the shaded
region shown in Figure 3.4b. Let the center of the outer circle have radius r1 and
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Figure 3.4: (a) Once again, f is used to partition R2 into two regions. In this case,
the algebraic primitive represents a disc-shaped region. (b) The shaded “face” can
be exactly modeled using only four algebraic primitives.

be centered at the origin. Suppose that the “eyes” have radius r2 and r3 and are
centered at (x2, y2) and (x3, y3), respectively. Let the “mouth” be an ellipse with
major axis a and minor axis b and is centered at (0, y4). The functions are defined
as

f1 = x2 + y2 − r21,

f2 = −
(
(x− x2)

2 + (y − y2)
2 − r22

)
,

f3 = −
(
(x− x3)

2 + (y − y3)
2 − r23

)
,

f4 = −
(
x2/a2 + (y − y4)

2/b2 − 1
)
.

(3.11)

For f2, f3, and f4, the familiar circle and ellipse equations were multiplied by −1 to
yield algebraic primitives for all points outside of the circle or ellipse. The shaded
region O is represented as

O = H1 ∩H2 ∩H3 ∩H4. (3.12)

�

In the case of semi-algebraic models, the intersection of primitives does not
necessarily result in a convex subset of W . In general, however, it might be
necessary to form O by taking unions and intersections of algebraic primitives.

A logical predicate, φ(x, y), can once again be formed, and collision checking
is still performed in time that is linear in the number of primitives. Note that
it is still very efficient to evaluate every primitive; f is just a polynomial that is
evaluated on the point (x, y, z).

The semi-algebraic formulation generalizes easily to the case of a 3D world.
This results in algebraic primitives of the form

H = {(x, y, z) ∈ W | f(x, y, z) ≤ 0}, (3.13)
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which can be used to define a solid representation of a 3D obstacle O and a logical
predicate φ.

Equations (3.10) and (3.13) are sufficient to express any model of interest. One
may define many other primitives based on different relations, such as f(x, y, z) ≥
0, f(x, y, z) = 0, f(x, y, z) < 0, f(x, y, z) = 0, and f(x, y, z) 6= 0; however, most
of them do not enhance the set of models that can be expressed. They might,
however, be more convenient in certain contexts. To see that some primitives do
not allow new models to be expressed, consider the primitive

H = {(x, y, z) ∈ W | f(x, y, z) ≥ 0}. (3.14)

The right part may be alternatively represented as −f(x, y, z) ≤ 0, and −f may
be considered as a new polynomial function of x, y, and z. For an example that
involves the = relation, consider the primitive

H = {(x, y, z) ∈ W | f(x, y, z) = 0}. (3.15)

It can instead be constructed as H = H1 ∩H2, in which

H1 = {(x, y, z) ∈ W | f(x, y, z) ≤ 0} (3.16)

and

H2 = {(x, y, z) ∈ W | − f(x, y, z) ≤ 0}. (3.17)

The relation< does add some expressive power if it is used to construct primitives.2

It is needed to construct models that do not include the outer boundary (for
example, the set of all points inside of a sphere, which does not include points on
the sphere). These are generally called open sets and are defined Chapter 4.

3.1.3 Other Models

The choice of a model often depends on the types of operations that will be per-
formed by the planning algorithm. For combinatorial motion planning methods,
to be covered in Chapter 6, the particular representation is critical. On the other
hand, for sampling-based planning methods, to be covered in Chapter 5, the par-
ticular representation is important only to the collision detection algorithm, which
is treated as a “black box” as far as planning is concerned. Therefore, the models
given in the remainder of this section are more likely to appear in sampling-based
approaches and may be invisible to the designer of a planning algorithm (although
it is never wise to forget completely about the representation).

2An alternative that yields the same expressive power is to still use ≤, but allow set comple-
ments, in addition to unions and intersections.
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Figure 3.5: A polygon with holes can be expressed by using different orientations:
counterclockwise for the outer boundary and clockwise for the hole boundaries.
Note that the shaded part is always to the left when following the arrows.

Nonconvex polygons and polyhedra The method in Section 3.1.1 required
nonconvex polygons to be represented as a union of convex polygons. Instead, a
boundary representation of a nonconvex polygon may be directly encoded by list-
ing vertices in a specific order; assume that counterclockwise order is used. Each
polygon of m vertices may be encoded by a list of the form (x1, y1), (x2, y2), . . .,
(xm, ym). It is assumed that there is an edge between each (xi, yi) and (xi+1, yi+1)
for each i from 1 tom−1, and also an edge between (xm, ym) and (x1, y1). Ordinar-
ily, the vertices should be chosen in a way that makes the polygon simple, meaning
that no edges intersect. In this case, there is a well-defined interior of the polygon,
which is to the left of every edge, if the vertices are listed in counterclockwise
order.

What if a polygon has a hole in it? In this case, the boundary of the hole
can be expressed as a polygon, but with its vertices appearing in the clockwise
direction. To the left of each edge is the interior of the outer polygon, and to the
right is the hole, as shown in Figure 3.5

Although the data structures are a little more complicated for three dimen-
sions, boundary representations of nonconvex polyhedra may be expressed in a
similar manner. In this case, instead of an edge list, one must specify faces, edges,
and vertices, with pointers that indicate their incidence relations. Consistent ori-
entations must also be chosen, and holes may be modeled once again by selecting
opposite orientations.

3D triangles Suppose W = R3. One of the most convenient geometric models
to express is a set of triangles, each of which is specified by three points, (x1, y1, z1),
(x2, y2, z2), (x3, y3, z3). This model has been popular in computer graphics because
graphics acceleration hardware primarily uses triangle primitives. It is assumed
that the interior of the triangle is part of the model. Thus, two triangles are
considered as “colliding” if one pokes into the interior of another. This model offers
great flexibility because there are no constraints on the way in which triangles must
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Figure 3.6: Triangle strips and triangle fans can reduce the number of redundant
points.

be expressed; however, this is also one of the drawbacks. There is no coherency
that can be exploited to easily declare whether a point is “inside” or “outside” of
a 3D obstacle. If there is at least some coherency, then it is sometimes preferable
to reduce redundancy in the specification of triangle coordinates (many triangles
will share the same corners). Representations that remove this redundancy are
called a triangle strip, which is a sequence of triangles such that each adjacent
pair shares a common edge, and a triangle fan, which is a triangle strip in which
all triangles share a common vertex. See Figure 3.6.

Nonuniform rational B-splines (NURBS) These are used in many engi-
neering design systems to allow convenient design and adjustment of curved sur-
faces, in applications such as aircraft or automobile body design. In contrast to
semi-algebraic models, which are implicit equations, NURBS and other splines are
parametric equations. This makes computations such as rendering easier; however,
others, such as collision detection, become more difficult. These models may be
defined in any dimension. A brief 2D formulation is given here.

A curve can be expressed as

C(u) =

n∑

i=0

wiPiNi,k(u)

n∑

i=0

wiNi,k(u)

, (3.18)

in which wi ∈ R are weights and Pi are control points. The Ni,k are normalized
basis functions of degree k, which can be expressed recursively as

Ni,k(u) =

(
u− ti

ti+k − ti

)

Ni,k−1(u) +

(
ti+k+1 − u

ti+k+1 − ti+1

)

Ni+1,k−1(u). (3.19)

The basis of the recursion is Ni,0(u) = 1 if ti ≤ u < ti+1, and Ni,0(u) = 0 otherwise.
A knot vector is a nondecreasing sequence of real values, {t0, t1, . . . , tm}, that
controls the intervals over which certain basic functions take effect.

Bitmaps For either W = R2 or W = R3, it is possible to discretize a bounded
portion of the world into rectangular cells that may or may not be occupied.
The resulting model looks very similar to Example 2.1. The resolution of this
discretization determines the number of cells per axis and the quality of the ap-
proximation. The representation may be considered as a binary image in which



92 S. M. LaValle: Planning Algorithms

each “1” in the image corresponds to a rectangular region that contains at least
one point of O, and “0” represents those that do not contain any of O. Although
bitmaps do not have the elegance of the other models, they often arise in applica-
tions. One example is a digital map constructed by a mobile robot that explores
an environment with its sensors. One generalization of bitmaps is a gray-scale
map or occupancy grid. In this case, a numerical value may be assigned to each
cell, indicating quantities such as “the probability that an obstacle exists” or the
“expected difficulty of traversing the cell.” The latter interpretation is often used
in terrain maps for navigating planetary rovers.

Superquadrics Instead of using polynomials to define fi, many generalizations
can be constructed. One popular primitive is a superquadric, which generalizes
quadric surfaces. One example is a superellipsoid, which is given for W = R3 by

(
|x/a|n1 + |y/b|n2

)n1/n2 + |z/c|n1 − 1 ≤ 0, (3.20)

in which n1 ≥ 2 and n2 ≥ 2. If n1 = n2 = 2, an ellipse is generated. As n1 and n2

increase, the superellipsoid becomes shaped like a box with rounded corners.

Generalized cylinders A generalized cylinder is a generalization of an ordinary
cylinder. Instead of being limited to a line, the center axis is a continuous spine
curve, (x(s), y(s), z(s)), for some parameter s ∈ [0, 1]. Instead of a constant radius,
a radius function r(s) is defined along the spine. The value r(s) is the radius of
the circle obtained as the cross section of the generalized cylinder at the point
(x(s), y(s), z(s)). The normal to the cross-section plane is the tangent to the spine
curve at s.

3.2 Rigid-Body Transformations

Any of the techniques from Section 3.1 can be used to define both the obstacle
region and the robot. Let O refer to the obstacle region, which is a subset of W .
Let A refer to the robot, which is a subset of R2 or R3, matching the dimension
of W . Although O remains fixed in the world, W , motion planning problems will
require “moving” the robot, A.

3.2.1 General Concepts

Before giving specific transformations, it will be helpful to define them in general to
avoid confusion in later parts when intuitive notions might fall apart. Suppose that
a rigid robot, A, is defined as a subset of R2 or R3. A rigid-body transformation is
a function, h : A → W , that maps every point of A into W with two requirements:
1) The distance between any pair of points of A must be preserved, and 2) the
orientation of A must be preserved (no “mirror images”).
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Using standard function notation, h(a) for some a ∈ A refers to the point in
W that is “occupied” by a. Let

h(A) = {h(a) ∈ W | a ∈ A}, (3.21)

which is the image of h and indicates all points in W occupied by the transformed
robot.

Transforming the robot model Consider transforming a robot model. If A
is expressed by naming specific points in R2, as in a boundary representation of a
polygon, then each point is simply transformed from a to h(a) ∈ W . In this case,
it is straightforward to transform the entire model using h. However, there is a
slight complication if the robot model is expressed using primitives, such as

Hi = {a ∈ R2 | fi(a) ≤ 0}. (3.22)

This differs slightly from (3.2) because the robot is defined in R2 (which is not
necessarily W), and also a is used to denote a point (x, y) ∈ A. Under a transfor-
mation h, the primitive is transformed as

h(Hi) = {h(a) ∈ W | fi(a) ≤ 0}. (3.23)

To transform the primitive completely, however, it is better to directly name points
in w ∈ W , as opposed to h(a) ∈ W . Using the fact that a = h−1(w), this becomes

h(Hi) = {w ∈ W | fi(h−1(w)) ≤ 0}, (3.24)

in which the inverse of h appears in the right side because the original point a ∈ A
needs to be recovered to evaluate fi. Therefore, it is important to be careful
because either h or h−1 may be required to transform the model. This will be
observed in more specific contexts in some coming examples.

A parameterized family of transformations It will become important to
study families of transformations, in which some parameters are used to select
the particular transformation. Therefore, it makes sense to generalize h to accept
two variables: a parameter vector, q ∈ Rn, along with a ∈ A. The resulting
transformed point a is denoted by h(q, a), and the entire robot is transformed to
h(q,A) ⊂ W .

The coming material will use the following shorthand notation, which requires
the specific h to be inferred from the context. Let h(q, a) be shortened to a(q), and
let h(q,A) be shortened to A(q). This notation makes it appear that by adjusting
the parameter q, the robot A travels around in W as different transformations are
selected from the predetermined family. This is slightly abusive notation, but it is
convenient. The expression A(q) can be considered as a set-valued function that
yields the set of points in W that are occupied by A when it is transformed by
q. Most of the time the notation does not cause trouble, but when it does, it is
helpful to remember the definitions from this section, especially when trying to
determine whether h or h−1 is needed.
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Defining frames It was assumed so far that A is defined in R2 or R3, but before
it is transformed, it is not considered to be a subset of W . The transformation h
places the robot in W . In the coming material, it will be convenient to indicate
this distinction using coordinate frames. The origin and coordinate basis vectors
of W will be referred to as the world frame.3 Thus, any point w ∈ W is expressed
in terms of the world frame.

The coordinates used to define A are initially expressed in the body frame,
which represents the origin and coordinate basis vectors of R2 or R3. In the case
of A ⊂ R2, it can be imagined that the body frame is painted on the robot.
Transforming the robot is equivalent to converting its model from the body frame
to the world frame. This has the effect of placing4 A into W at some position
and orientation. When multiple bodies are covered in Section 3.3, each body will
have its own body frame, and transformations require expressing all bodies with
respect to the world frame.

3.2.2 2D Transformations

Translation A rigid robot A ⊂ R2 is translated by using two parameters, xt, yt ∈
R. Using definitions from Section 3.2.1, q = (xt, yt), and h is defined as

h(x, y) = (x+ xt, y + yt). (3.25)

A boundary representation of A can be translated by transforming each vertex in
the sequence of polygon vertices using (3.25). Each point, (xi, yi), in the sequence
is replaced by (xi + xt, yi + yt).

Now consider a solid representation of A, defined in terms of primitives. Each
primitive of the form

Hi = {(x, y) ∈ R2 | f(x, y) ≤ 0} (3.26)

is transformed to

h(Hi) = {(x, y) ∈ W | f(x− xt, y − yt) ≤ 0}. (3.27)

Example 3.2 (Translating a Disc) For example, suppose the robot is a disc of
unit radius, centered at the origin. It is modeled by a single primitive,

Hi = {(x, y) ∈ R2 | x2 + y2 − 1 ≤ 0}. (3.28)

Suppose A = Hi is translated xt units in the x direction and yt units in the y
direction. The transformed primitive is

h(Hi) = {(x, y) ∈ W | (x− xt)
2 + (y − yt)

2 − 1 ≤ 0}, (3.29)

3The world frame serves the same purpose as an inertial frame in Newtonian mechanics.
Intuitively, it is a frame that remains fixed and from which all measurements are taken. See
Section 13.3.1.

4Technically, this placement is a function called an orientation-preserving isometric embed-
ding.
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Moving
the Robot

Moving the
Coordinate
Frame

(a) Translation of the robot (b) Translation of the frame

Figure 3.7: Every transformation has two interpretations.

which is the familiar equation for a disc centered at (xt, yt). In this example, the
inverse, h−1 is used, as described in Section 3.2.1. �

The translated robot is denoted as A(xt, yt). Translation by (0, 0) is the iden-
tity transformation, which results in A(0, 0) = A, if it is assumed that A ⊂ W
(recall that A does not necessarily have to be initially embedded in W). It will be
convenient to use the term degrees of freedom to refer to the maximum number of
independent parameters that are needed to completely characterize the transfor-
mation applied to the robot. If the set of allowable values for xt and yt forms a
two-dimensional subset of R2, then the degrees of freedom is two.

Suppose that A is defined directly in W with translation. As shown in Figure
3.7, there are two interpretations of a rigid-body transformation applied to A: 1)
The world frame remains fixed and the robot is transformed; 2) the robot remains
fixed and the world frame is translated. The first one characterizes the effect of
the transformation from a fixed world frame, and the second one indicates how
the transformation appears from the robot’s perspective. Unless stated otherwise,
the first interpretation will be used when we refer to motion planning problems
because it often models a robot moving in a physical world. Numerous books cover
coordinate transformations under the second interpretation. This has been known
to cause confusion because the transformations may sometimes appear “backward”
from what is desired in motion planning.

Rotation The robot, A, can be rotated counterclockwise by some angle θ ∈
[0, 2π) by mapping every (x, y) ∈ A as

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ). (3.30)
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Using a 2× 2 rotation matrix,

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)

, (3.31)

the transformation can be written as
(
x cos θ − y sin θ
x sin θ + y cos θ

)

= R(θ)

(
x
y

)

. (3.32)

Using the notation of Section 3.2.1, R(θ) becomes h(q), for which q = θ. For
linear transformations, such as the one defined by (3.32), recall that the column
vectors represent the basis vectors of the new coordinate frame. The column
vectors of R(θ) are unit vectors, and their inner product (or dot product) is zero,
indicating that they are orthogonal. Suppose that the x and y coordinate axes,
which represent the body frame, are “painted” on A. The columns of R(θ) can be
derived by considering the resulting directions of the x- and y-axes, respectively,
after performing a counterclockwise rotation by the angle θ. This interpretation
generalizes nicely for higher dimensional rotation matrices.

Note that the rotation is performed about the origin. Thus, when defining the
model of A, the origin should be placed at the intended axis of rotation. Using
the semi-algebraic model, the entire robot model can be rotated by transforming
each primitive, yielding A(θ). The inverse rotation, R(−θ), must be applied to
each primitive.

Combining translation and rotation Suppose a rotation by θ is performed,
followed by a translation by xt, yt. This can be used to place the robot in any
desired position and orientation. Note that translations and rotations do not
commute! If the operations are applied successively, each (x, y) ∈ A is transformed
to (

x cos θ − y sin θ + xt

x sin θ + y cos θ + yt

)

. (3.33)

The following matrix multiplication yields the same result for the first two vector
components:





cos θ − sin θ xt

sin θ cos θ yt
0 0 1









x
y
1



 =





x cos θ − y sin θ + xt

x sin θ + y cos θ + yt
1



 . (3.34)

This implies that the 3× 3 matrix,

T =





cos θ − sin θ xt

sin θ cos θ yt
0 0 1



 , (3.35)

represents a rotation followed by a translation. The matrix T will be referred to
as a homogeneous transformation matrix. It is important to remember that T
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Figure 3.8: Any three-dimensional rotation can be described as a sequence of yaw,
pitch, and roll rotations.

represents a rotation followed by a translation (not the other way around). Each
primitive can be transformed using the inverse of T , resulting in a transformed
solid model of the robot. The transformed robot is denoted by A(xt, yt, θ), and
in this case there are three degrees of freedom. The homogeneous transformation
matrix is a convenient representation of the combined transformations; therefore,
it is frequently used in robotics, mechanics, computer graphics, and elsewhere.
It is called homogeneous because over R3 it is just a linear transformation with-
out any translation. The trick of increasing the dimension by one to absorb the
translational part is common in projective geometry [804].

3.2.3 3D Transformations

Rigid-body transformations for the 3D case are conceptually similar to the 2D case;
however, the 3D case appears more difficult because rotations are significantly more
complicated.

3D translation The robot, A, is translated by some xt, yt, zt ∈ R using

(x, y, z) 7→ (x+ xt, y + yt, z + zt). (3.36)

A primitive of the form

Hi = {(x, y, z) ∈ W | fi(x, y, z) ≤ 0} (3.37)

is transformed to

{(x, y, z) ∈ W | fi(x− xt, y − yt, z − zt) ≤ 0}. (3.38)

The translated robot is denoted as A(xt, yt, zt).
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Yaw, pitch, and roll rotations A 3D body can be rotated about three orthog-
onal axes, as shown in Figure 3.8. Borrowing aviation terminology, these rotations
will be referred to as yaw, pitch, and roll:

1. A yaw is a counterclockwise rotation of α about the z-axis. The rotation
matrix is given by

Rz(α) =





cosα − sinα 0
sinα cosα 0
0 0 1



 . (3.39)

Note that the upper left entries of Rz(α) form a 2D rotation applied to the
x and y coordinates, whereas the z coordinate remains constant.

2. A pitch is a counterclockwise rotation of β about the y-axis. The rotation
matrix is given by

Ry(β) =





cos β 0 sin β
0 1 0

− sin β 0 cos β



 . (3.40)

3. A roll is a counterclockwise rotation of γ about the x-axis. The rotation
matrix is given by

Rx(γ) =





1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 . (3.41)

Each rotation matrix is a simple extension of the 2D rotation matrix, (3.31). For
example, the yaw matrix, Rz(α), essentially performs a 2D rotation with respect
to the x and y coordinates while leaving the z coordinate unchanged. Thus, the
third row and third column of Rz(α) look like part of the identity matrix, while
the upper right portion of Rz(α) looks like the 2D rotation matrix.

The yaw, pitch, and roll rotations can be used to place a 3D body in any
orientation. A single rotation matrix can be formed by multiplying the yaw, pitch,
and roll rotation matrices to obtain

R(α,β, γ) = Rz(α)Ry(β)Rx(γ) =




cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cos β cos γ



 .

(3.42)

It is important to note that R(α, β, γ) performs the roll first, then the pitch, and
finally the yaw. If the order of these operations is changed, a different rotation
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matrix would result. Be careful when interpreting the rotations. Consider the
final rotation, a yaw by α. Imagine sitting inside of a robot A that looks like
an aircraft. If β = γ = 0, then the yaw turns the plane in a way that feels
like turning a car to the left. However, for arbitrary values of β and γ, the final
rotation axis will not be vertically aligned with the aircraft because the aircraft is
left in an unusual orientation before α is applied. The yaw rotation occurs about
the z-axis of the world frame, not the body frame of A. Each time a new rotation
matrix is introduced from the left, it has no concern for original body frame of
A. It simply rotates every point in R3 in terms of the world frame. Note that 3D
rotations depend on three parameters, α, β, and γ, whereas 2D rotations depend
only on a single parameter, θ. The primitives of the model can be transformed
using R(α, β, γ), resulting in A(α, β, γ).

Determining yaw, pitch, and roll from a rotation matrix It is often con-
venient to determine the α, β, and γ parameters directly from a given rotation
matrix. Suppose an arbitrary rotation matrix





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (3.43)

is given. By setting each entry equal to its corresponding entry in (3.42), equations
are obtained that must be solved for α, β, and γ. Note that r21/r11 = tanα and

r32/r33 = tan γ. Also, r31 = − sin β and
√

r232 + r233 = cos β. Solving for each
angle yields

α = tan−1(r21/r11), (3.44)

β = tan−1
(

− r31
/
√

r232 + r233

)

, (3.45)

and
γ = tan−1(r32/r33). (3.46)

There is a choice of four quadrants for the inverse tangent functions. How can
the correct quadrant be determined? Each quadrant should be chosen by using
the signs of the numerator and denominator of the argument. The numerator sign
selects whether the direction will be above or below the x-axis, and the denomi-
nator selects whether the direction will be to the left or right of the y-axis. This
is the same as the atan2 function in the C programming language, which nicely
expands the range of the arctangent to [0, 2π). This can be applied to express
(3.44), (3.45), and (3.46) as

α = atan2(r21, r11), (3.47)

β = atan2
(

− r31,
√

r232 + r233

)

, (3.48)

and
γ = atan2(r32, r33). (3.49)

Note that this method assumes r11 6= 0 and r33 6= 0.
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The homogeneous transformation matrix for 3D bodies As in the 2D
case, a homogeneous transformation matrix can be defined. For the 3D case, a
4 × 4 matrix is obtained that performs the rotation given by R(α, β, γ), followed
by a translation given by xt, yt, zt. The result is

T =






cosα cosβ cosα sinβ sin γ − sinα cos γ cosα sinβ cos γ + sinα sin γ xt
sinα cosβ sinα sinβ sin γ + cosα cos γ sinα sinβ cos γ − cosα sin γ yt
− sinβ cosβ sin γ cosβ cos γ zt

0 0 0 1




.

(3.50)
Once again, the order of operations is critical. The matrix T in (3.50) represents
the following sequence of transformations:

1. Roll by γ 3. Yaw by α
2. Pitch by β 4. Translate by (xt, yt, zt).

The robot primitives can be transformed to yield A(xt, yt, zt, α, β, γ). A 3D rigid
body that is capable of translation and rotation therefore has six degrees of free-
dom.

3.3 Transforming Kinematic Chains of Bodies

The transformations become more complicated for a chain of attached rigid bodies.
For convenience, each rigid body is referred to as a link. LetA1, A2, . . . , Am denote
a set of m links. For each i such that 1 ≤ i < m, link Ai is “attached” to link Ai+1

in a way that allows Ai+1 some constrained motion with respect to Ai. The motion
constraint must be explicitly given, and will be discussed shortly. As an example,
imagine a trailer that is attached to the back of a car by a hitch that allows the
trailer to rotate with respect to the car. In general, a set of attached bodies will
be referred to as a linkage. This section considers bodies that are attached in a
single chain. This leads to a particular linkage called a kinematic chain.

3.3.1 A 2D Kinematic Chain

Before considering a kinematic chain, suppose A1 and A2 are unattached rigid
bodies, each of which is capable of translating and rotating in W = R2. Since
each body has three degrees of freedom, there is a combined total of six degrees
of freedom; the independent parameters are x1, y1, θ1, x2, y2, and θ2.

Attaching bodies When bodies are attached in a kinematic chain, degrees of
freedom are removed. Figure 3.9 shows two different ways in which a pair of 2D
links can be attached. The place at which the links are attached is called a joint.
For a revolute joint, one link is capable only of rotation with respect to the other.
For a prismatic joint is shown, one link slides along the other. Each type of joint
removes two degrees of freedom from the pair of bodies. For example, consider a
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A1
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A1

A2

Revolute Prismatic

Figure 3.9: Two types of 2D joints: a revolute joint allows one link to rotate with
respect to the other, and a prismatic joint allows one link to translate with respect
to the other.

revolute joint that connects A1 to A2. Assume that the point (0, 0) in the body
frame of A2 is permanently fixed to a point (xa, ya) in the body frame of A1.
This implies that the translation of A2 is completely determined once xa and ya
are given. Note that xa and ya depend on x1, y1, and θ1. This implies that A1

and A2 have a total of four degrees of freedom when attached. The independent
parameters are x1, y1, θ1, and θ2. The task in the remainder of this section is to
determine exactly how the models of A1, A2, . . ., Am are transformed when they
are attached in a chain, and to give the expressions in terms of the independent
parameters.

Consider the case of a kinematic chain in which each pair of links is attached
by a revolute joint. The first task is to specify the geometric model for each link,
Ai. Recall that for a single rigid body, the origin of the body frame determines the
axis of rotation. When defining the model for a link in a kinematic chain, excessive
complications can be avoided by carefully placing the body frame. Since rotation
occurs about a revolute joint, a natural choice for the origin is the joint between
Ai and Ai−1 for each i > 1. For convenience that will soon become evident, the
xi-axis for the body frame of Ai is defined as the line through the two joints that
lie in Ai, as shown in Figure 3.10. For the last link, Am, the xm-axis can be
placed arbitrarily, assuming that the origin is placed at the joint that connects
Am to Am−1. The body frame for the first link, A1, can be placed using the same
considerations as for a single rigid body.

Homogeneous transformation matrices for 2D chains We are now pre-
pared to determine the location of each link. The location in W of a point in
(x, y) ∈ A1 is determined by applying the 2D homogeneous transformation matrix
(3.35),

T1 =





cos θ1 − sin θ1 xt

sin θ1 cos θ1 yt
0 0 1



 . (3.51)
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Figure 3.10: The body frame of each Ai, for 1 < i < m, is based on the joints that
connect Ai to Ai−1 and Ai+1.

As shown in Figure 3.10, let ai−1 be the distance between the joints in Ai−1. The
orientation difference between Ai and Ai−1 is denoted by the angle θi. Let Ti

represent a 3 × 3 homogeneous transformation matrix (3.35), specialized for link
Ai for 1 < i ≤ m,

Ti =





cos θi − sin θi ai−1

sin θi cos θi 0
0 0 1



 . (3.52)

This generates the following sequence of transformations:

1. Rotate counterclockwise by θi.

2. Translate by ai−1 along the x-axis.

The transformation Ti expresses the difference between the body frame of Ai and
the body frame of Ai−1. The application of Ti moves Ai from its body frame to
the body frame of Ai−1. The application of Ti−1Ti moves both Ai and Ai−1 to the
body frame of Ai−2. By following this procedure, the location in W of any point
(x, y) ∈ Am is determined by multiplying the transformation matrices to obtain

T1T2 · · ·Tm





x
y
1



 . (3.53)

Example 3.3 (A 2D Chain of Three Links) To gain an intuitive understand-
ing of these transformations, consider determining the configuration for link A3,
as shown in Figure 3.11. Figure 3.11a shows a three-link chain in which A1 is at
its initial configuration and the other links are each offset by π/4 from the pre-
vious link. Figure 3.11b shows the frame in which the model for A3 is initially
defined. The application of T3 causes a rotation of θ3 and a translation by a2.
As shown in Figure 3.11c, this places A3 in its appropriate configuration. Note
that A2 can be placed in its initial configuration, and it will be attached cor-
rectly to A3. The application of T2 to the previous result places both A3 and A2
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in their proper configurations, and A1 can be placed in its initial configuration. �

For revolute joints, the ai parameters are constants, and the θi parameters are
variables. The transformed mth link is represented as Am(xt, yt, θ1, . . . , θm). In
some cases, the first link might have a fixed location in the world. In this case,
the revolute joints account for all degrees of freedom, yielding Am(θ1, . . . , θm). For
prismatic joints, the ai parameters are variables, instead of the θi parameters. It
is straightforward to include both types of joints in the same kinematic chain.

3.3.2 A 3D Kinematic Chain

As for a single rigid body, the 3D case is significantly more complicated than the
2D case due to 3D rotations. Also, several more types of joints are possible, as
shown in Figure 3.12. Nevertheless, the main ideas from the transformations of
2D kinematic chains extend to the 3D case. The following steps from Section 3.3.1
will be recycled here:

1. The body frame must be carefully placed for each Ai.

2. Based on joint relationships, several parameters are measured.

3. The parameters define a homogeneous transformation matrix, Ti.

4. The location in W of any point in Am is given by applying the matrix
T1T2 · · ·Tm.

Consider a kinematic chain of m links in W = R3, in which each Ai for 1 ≤
i < m is attached to Ai+1 by a revolute joint. Each link can be a complicated,
rigid body as shown in Figure 3.13. For the 2D problem, the coordinate frames
were based on the points of attachment. For the 3D problem, it is convenient to
use the axis of rotation of each revolute joint (this is equivalent to the point of
attachment for the 2D case). The axes of rotation will generally be skew lines in
R3, as shown in Figure 3.14. Let the zi-axis be the axis of rotation for the revolute
joint that holds Ai to Ai−1. Between each pair of axes in succession, let the xi-axis
join the closest pair of points between the zi- and zi+1-axes, with the origin on the
zi-axis and the direction pointing towards the nearest point of the zi+1-axis. This
axis is uniquely defined if the zi- and zi+1-axes are not parallel. The recommended
body frame for each Ai will be given with respect to the zi- and xi-axes, which
are shown in Figure 3.14. Assuming a right-handed coordinate system, the yi-
axis points away from us in Figure 3.14. In the transformations that will appear
shortly, the coordinate frame given by xi, yi, and zi will be most convenient for
defining the model for Ai. It might not always appear convenient because the
origin of the frame may even lie outside of Ai, but the resulting transformation
matrices will be easy to understand.

In Section 3.3.1, each Ti was defined in terms of two parameters, ai−1 and θi.
For the 3D case, four parameters will be defined: di, θi, ai−1, and αi−1. These
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(a) A three-link chain (b) A3 in its body frame
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(c) T3 puts A3 in A2’s body frame (d) T2T3 puts A3 in A1’s body frame

Figure 3.11: Applying the transformation T2T3 to the model of A3. If T1 is the
identity matrix, then this yields the location in W of points in A3.
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Revolute Prismatic Screw
1 Degree of Freedom 1 Degree of Freedom 1 Degree of Freedom

Cylindrical Spherical Planar
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Figure 3.12: Types of 3D joints arising from the 2D surface contact between two
bodies.

are referred to as Denavit-Hartenberg (DH) parameters [434]. The definition of
each parameter is indicated in Figure 3.15. Figure 3.15a shows the definition of
di. Note that the xi−1- and xi-axes contact the zi-axis at two different places. Let
di denote signed distance between these points of contact. If the xi-axis is above
the xi−1-axis along the zi-axis, then di is positive; otherwise, di is negative. The
parameter θi is the angle between the xi- and xi−1-axes, which corresponds to the
rotation about the zi-axis that moves the xi−1-axis to coincide with the xi-axis.
The parameter ai is the distance between the zi- and zi−1-axes; recall these are
generally skew lines in R3. The parameter αi−1 is the angle between the zi- and
zi−1-axes.

Two screws The homogeneous transformation matrix Ti will be constructed by
combining two simpler transformations. The transformation

Ri =







cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1







(3.54)

causes a rotation of θi about the zi-axis, and a translation of di along the zi-
axis. Notice that the rotation by θi and translation by di commute because both
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Figure 3.13: The rotation axes for a generic link attached by revolute joints.

operations occur with respect to the same axis, zi. The combined operation of a
translation and rotation with respect to the same axis is referred to as a screw (as
in the motion of a screw through a nut). The effect of Ri can thus be considered
as a screw about the zi-axis. The second transformation is

Qi−1 =







1 0 0 ai−1

0 cosαi−1 − sinαi−1 0
0 sinαi−1 cosαi−1 0
0 0 0 1







, (3.55)

which can be considered as a screw about the xi−1-axis. A rotation of αi−1 about
the xi−1-axis and a translation of ai−1 are performed.

The homogeneous transformation matrix The transformation Ti, for each
i such that 1 < i ≤ m, is

Ti = Qi−1Ri =







cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1







.

(3.56)
This can be considered as the 3D counterpart to the 2D transformation matrix,
(3.52). The following four operations are performed in succession:

1. Translate by di along the zi-axis.

2. Rotate counterclockwise by θi about the zi-axis.

3. Translate by ai−1 along the xi−1-axis.

4. Rotate counterclockwise by αi−1 about the xi−1-axis.
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Figure 3.14: The rotation axes of the generic links are skew lines in R3.

As in the 2D case, the first matrix, T1, is special. To represent any position
and orientation of A1, it could be defined as a general rigid-body homogeneous
transformation matrix, (3.50). If the first body is only capable of rotation via a
revolute joint, then a simple convention is usually followed. Let the a0, α0 param-
eters of T1 be assigned as a0 = α0 = 0 (there is no z0-axis). This implies that Q0

from (3.55) is the identity matrix, which makes T1 = R1.
The transformation Ti for i > 1 gives the relationship between the body frame

of Ai and the body frame of Ai−1. The position of a point (x, y, z) on Am is given
by

T1T2 · · ·Tm







x
y
z
1







. (3.57)

For each revolute joint, θi is treated as the only variable in Ti. Prismatic joints
can be modeled by allowing ai to vary. More complicated joints can be modeled as
a sequence of degenerate joints. For example, a spherical joint can be considered
as a sequence of three zero-length revolute joints; the joints perform a roll, a
pitch, and a yaw. Another option for more complicated joints is to abandon the
DH representation and directly develop the homogeneous transformation matrix.
This might be needed to preserve topological properties that become important in
Chapter 4.

Example 3.4 (Puma 560) This example demonstrates the 3D chain kinematics
on a classic robot manipulator, the PUMA 560, shown in Figure 3.16. The cur-
rent parameterization here is based on [37, 555]. The procedure is to determine
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xi

xi−1

di

zi

θi

xi

zi xi−1

(a) (b)

ai−1

zi−1 zi

xi−1

αi−1

xi−1

zi−1zi

(c) (d)

Figure 3.15: Definitions of the four DH parameters: di, θi, ai−1, αi−1. The zi- and
xi−1-axes in (b) and (d), respectively, are pointing outward. Any parameter may
be positive, zero, or negative.

appropriate body frames to represent each of the links. The first three links allow
the hand (called an end-effector) to make large movements in W , and the last
three enable the hand to achieve a desired orientation. There are six degrees of
freedom, each of which arises from a revolute joint. The body frames are shown in
Figure 3.16, and the corresponding DH parameters are given in Figure 3.17. Each
transformation matrix Ti is a function of θi; hence, it is written Ti(θi). The other
parameters are fixed for this example. Only θ1, θ2, . . ., θ6 are allowed to vary.

The parameters from Figure 3.17 may be substituted into the homogeneous
transformation matrices to obtain

T1(θ1) =







cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1







, (3.58)

T2(θ2) =







cos θ2 − sin θ2 0 0
0 0 1 d2

− sin θ2 − cos θ2 0 0
0 0 0 1







, (3.59)
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Figure 3.16: The Puma 560 is shown along with the DH parameters and body
frames for each link in the chain. This figure is borrowed from [555] by courtesy
of the authors.

T3(θ3) =







cos θ3 − sin θ3 0 a2
sin θ3 cos θ3 0 0
0 0 1 d3
0 0 0 1







, (3.60)

T4(θ4) =







cos θ4 − sin θ4 0 a3
0 0 −1 −d4

sin θ4 cos θ4 0 0
0 0 0 1







, (3.61)

T5(θ5) =







cos θ5 − sin θ5 0 0
0 0 1 0

− sin θ5 − cos θ5 0 0
0 0 0 1







, (3.62)

and

T6(θ6) =







cos θ6 − sin θ6 0 0
0 0 −1 0

sin θ6 cos θ6 0 0
0 0 0 1







. (3.63)
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Matrix αi−1 ai−1 θi di

T1(θ1) 0 0 θ1 0
T2(θ2) −π/2 0 θ2 d2
T3(θ3) 0 a2 θ3 d3
T4(θ4) π/2 a3 θ4 d4
T5(θ5) −π/2 0 θ5 0
T6(θ6) π/2 0 θ6 0

Figure 3.17: The DH parameters are shown for substitution into each homogeneous
transformation matrix (3.56). Note that a3 and d3 are negative in this example
(they are signed displacements, not distances).

Figure 3.18: A hydrocarbon (octane) molecule with 8 carbon atoms and 18 hy-
drogen atoms (courtesy of the New York University MathMol Library).

A point (x, y, z) in the body frame of the last link A6 appears in W as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)







x
y
z
1







. (3.64)

�

Example 3.5 (Transforming Octane) Figure 3.18 shows a ball-and-stick model
of an octane molecule. Each “ball” is an atom, and each “stick” represents a bond
between a pair of atoms. There is a linear chain of eight carbon atoms, and a
bond exists between each consecutive pair of carbons in the chain. There are also
numerous hydrogen atoms, but we will ignore them. Each bond between a pair
of carbons is capable of twisting, as shown in Figure 3.19. Studying the configu-
rations (called conformations) of molecules is an important part of computational
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Figure 3.19: Consider transforming the spine of octane by ignoring the hydrogen
atoms and allowing the bonds between carbons to rotate. This can be easily
constructed with balls and sticks (e.g., Tinkertoys). If the first link is held fixed,
then there are six degrees of freedom. The rotation of the last link is ignored.

biology. It is assumed that there are seven degrees of freedom, each of which arises
from twisting a bond. The techniques from this section can be applied to represent
these transformations.

Note that the bonds correspond exactly to the axes of rotation. This suggests
that the zi axes should be chosen to coincide with the bonds. Since consecutive
bonds meet at atoms, there is no distance between them. From Figure 3.15c,
observe that this makes ai = 0 for all i. From Figure 3.15a, it can be seen that each
di corresponds to a bond length, the distance between consecutive carbon atoms.
See Figure 3.20. This leaves two angular parameters, θi and αi. Since the only
possible motion of the links is via rotation of the zi-axes, the angle between two
consecutive axes, as shown in Figure 3.15d, must remain constant. In chemistry,
this is referred to as the bond angle and is represented in the DH parameterization
as αi. The remaining θi parameters are the variables that represent the degrees of
freedom. However, looking at Figure 3.15b, observe that the example is degenerate
because each xi-axis has no frame of reference because each ai = 0. This does not,
however, cause any problems. For visualization purposes, it may be helpful to
replace xi−1 and xi by zi−1 and zi+1, respectively. This way it is easy to see that as
the bond for the zi-axis is twisted, the observed angle changes accordingly. Each
bond is interpreted as a link, Ai. The origin of each Ai must be chosen to coincide
with the intersection point of the zi- and zi+1-axes. Thus, most of the points in
Ai will lie in the −zi direction; see Figure 3.20.

The next task is to write down the matrices. Attach a world frame to the first
bond, with the second atom at the origin and the bond aligned with the z-axis,
in the negative direction; see Figure 3.20. To define T1, recall that T1 = R1 from
(3.54) because Q0 is dropped. The parameter d1 represents the distance between
the intersection points of the x0- and x1-axes along the z1 axis. Since there is no
x0-axis, there is freedom to choose d1; hence, let d1 = 0 to obtain

T1(θ1) = R1(θ1) =







cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1







. (3.65)
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zi+1

zi

zi−1

di

Ai

xi

xi−1

Figure 3.20: Each bond may be interpreted as a “link” of length di that is aligned
with the zi-axis. Note that most of Ai appears in the −zi direction.

The application of T1 to points in A1 causes them to rotate around the z1-axis,
which appears correct.

The matrices for the remaining six bonds are

Ti(θi) =







cos θi − sin θi 0 0
sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 − sinαi−1di
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 cosαi−1di

0 0 0 1







, (3.66)

for i ∈ {2, . . . , 7}. The position of any point, (x, y, z) ∈ A7, is given by

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)T6(θ6)T7(θ7)







x
y
z
1







. (3.67)

�

3.4 Transforming Kinematic Trees

Motivation For many interesting problems, the linkage is arranged in a “tree”
as shown in Figure 3.21a. Assume here that the links are not attached in ways
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(a) (b)

Figure 3.21: General linkages: (a) Instead of a chain of rigid bodies, a “tree” of
rigid bodies can be considered. (b) If there are loops, then parameters must be
carefully assigned to ensure that the loops are closed.

that form loops (i.e., Figure 3.21b); that case is deferred until Section 4.4, although
some comments are also made at the end of this section. The human body, with its
joints and limbs attached to the torso, is an example that can be modeled as a tree
of rigid links. Joints such as knees and elbows are considered as revolute joints.
A shoulder joint is an example of a spherical joint, although it cannot achieve any
orientation (without a visit to the emergency room!). As mentioned in Section
1.4, there is widespread interest in animating humans in virtual environments and
also in developing humanoid robots. Both of these cases rely on formulations of
kinematics that mimic the human body.

Another problem that involves kinematic trees is the conformational analysis of
molecules. Example 3.5 involved a single chain; however, most organic molecules
are more complicated, as in the familiar drugs shown in Figure 1.14a (Section
1.2). The bonds may twist to give degrees of freedom to the molecule. Moving
through the space of conformations requires the formulation of a kinematic tree.
Studying these conformations is important because scientists need to determine
for some candidate drug whether the molecule can twist the right way so that it
docks nicely (i.e., requires low energy) with a protein cavity; this induces a phar-
macological effect, which hopefully is the desired one. Another important problem
is determining how complicated protein molecules fold into certain configurations.
These molecules are orders of magnitude larger (in terms of numbers of atoms
and degrees of freedom) than typical drug molecules. For more information, see
Section 7.5.
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A6 A7

A13

A8

A9

A12

A5

Figure 3.22: Now it is possible for a link to have more than two joints, as in A7.

Common joints for W = R2 First consider the simplest case in which there is
a 2D tree of links for which every link has only two points at which revolute joints
may be attached. This corresponds to Figure 3.21a. A single link is designated as
the root, A1, of the tree. To determine the transformation of a body, Ai, in the
tree, the tools from Section 3.3.1 are directly applied to the chain of bodies that
connects Ai to A1 while ignoring all other bodies. Each link contributes a θi to
the total degrees of freedom of the tree. This case seems quite straightforward;
unfortunately, it is not this easy in general.

Junctions with more than two rotation axes Now consider modeling a more
complicated collection of attached links. The main novelty is that one link may
have joints attached to it in more than two locations, as in A7 in Figure 3.22. A
link with more than two joints will be referred to as a junction.

If there is only one junction, then most of the complications arising from junc-
tions can be avoided by choosing the junction as the root. For example, for a
simple humanoid model, the torso would be a junction. It would be sensible to
make this the root of the tree, as opposed to the right foot. The legs, arms, and
head could all be modeled as independent chains. In each chain, the only concern
is that the first link of each chain does not attach to the same point on the torso.
This can be solved by inserting a fixed, fictitious link that connects from the origin
of the torso to the attachment point of the limb.

The situation is more interesting if there are multiple junctions. Suppose that
Figure 3.22 represents part of a 2D system of links for which the root, A1, is
attached via a chain of links to A5. To transform link A9, the tools from Section
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A7

y7
y
7

x7

x
7

φ

Figure 3.23: The junction is assigned two different frames, depending on which
chain was followed. The solid axes were obtained from transforming A9, and the
dashed axes were obtained from transforming A13.

3.3.1 may be directly applied to yield a sequence of transformations,

T1 · · ·T5T6T7T8T9





x
y
1



 , (3.68)

for a point (x, y) ∈ A9. Likewise, to transform T13, the sequence

T1 · · ·T5T6T7T12T13





x
y
1



 (3.69)

can be used by ignoring the chain formed by A8 and A9. So far everything seems
to work well, but take a close look at A7. As shown in Figure 3.23, its body frame
was defined in two different ways, one for each chain. If both are forced to use
the same frame, then at least one must abandon the nice conventions of Section
3.3.1 for choosing frames. This situation becomes worse for 3D trees because
this would suggest abandoning the DH parameterization. The Khalil-Kleinfinger
parameterization is an elegant extension of the DH parameterization and solves
these frame assignment issues [524].

Constraining parameters Fortunately, it is fine to use different frames when
following different chains; however, one extra piece of information is needed. Imag-
ine transforming the whole tree. The variable θ7 will appear twice, once from each
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of the upper and lower chains. Let θ7u and θ7l denote these θ’s. Can θ really be
chosen two different ways? This would imply that the tree is instead as pictured
in Figure 3.24, in which there are two independently moving links, A7u and A7l.
To fix this problem, a constraint must be imposed. Suppose that θ7l is treated as

A6

A13

A8

A9

A12

A5

A7u

A7l

Figure 3.24: Choosing each θ7 independently would result in a tree that ignores
that fact that A7 is rigid.

an independent variable. The parameter θ7u must then be chosen as θ7l + φ, in
which φ is as shown in Figure 3.23.

Example 3.6 (A 2D Tree of Bodies) Figure 3.25 shows a 2D example that
involves six links. To transform (x, y) ∈ A6, the only relevant links are A5, A2,
and A1. The chain of transformations is

T1T2lT5T6





x
y
1



 , (3.70)

in which

T1 =





cos θ1 − sin θ1 xt

sin θ1 cos θ1 yt
0 0 1



 =





cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1



 , (3.71)

T2l =





cos θ2l − sin θ2l a1
sin θ2l cos θ2l 0
0 0 1



 =





cos θ2 − sin θ2 1
sin θ2 cos θ2 0
0 0 1



 , (3.72)

T5 =





cos θ5 − sin θ5 a2
sin θ5 cos θ5 0
0 0 1



 =





cos θ5 − sin θ5
√
2

sin θ5 cos θ5 0
0 0 1



 , (3.73)
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Figure 3.25: A tree of bodies in which the joints are attached in different places.

and

T6 =





cos θ6 − sin θ6 a5
sin θ6 cos θ6 0
0 0 1



 =





cos θ6 − sin θ6 1
sin θ6 cos θ6 0
0 0 1



 . (3.74)

The matrix T2l in (3.72) denotes the fact that the lower chain was followed. The
transformation for points in A4 is

T1T2uT4T5





x
y
1



 , (3.75)

in which T1 is the same as in (3.71), and

T3 =





cos θ3 − sin θ3 a2
sin θ3 cos θ3 0
0 0 1



 =





cos θ3 − sin θ3
√
2

sin θ3 cos θ3 0
0 0 1



 , (3.76)

and

T4 =





cos θ4 − sin θ4 a4
sin θ4 cos θ4 0
0 0 1



 =





cos θ4 − sin θ4 0
sin θ4 cos θ4 0
0 0 1



 . (3.77)

The interesting case is

T2u =





cos θ2u − sin θ2u a1
sin θ2u cos θ2u 0

0 0 1



 =





cos(θ2l + π/4) − sin(θ2l + π/4) a1
sin(θ2l + π/4) cos(θ2l + π/4) 0

0 0 1



 ,

(3.78)
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A2
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A10
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A1

A8

A6

Figure 3.26: There are ten links and ten revolute joints arranged in a loop. This
is an example of a closed kinematic chain.

in which the constraint θ2u = θ2l + π/4 is imposed to enforce the fact that A2 is a
junction. �

For a 3D tree of bodies the same general principles may be followed. In some
cases, there will not be any complications that involve special considerations of
junctions and constraints. One example of this is the transformation of flexible
molecules because all consecutive rotation axes intersect, and junctions occur di-
rectly at these points of intersection. In general, however, the DH parameter
technique may be applied for each chain, and then the appropriate constraints
have to be determined and applied to represent the true degrees of freedom of the
tree. The Khalil-Kleinfinger parameterization conveniently captures the resulting
solution [524].

What if there are loops? The most general case includes links that are con-
nected in loops, as shown in Figure 3.26. These are generally referred to as closed
kinematic chains. This arises in many applications. For example, with humanoid
robotics or digital actors, a loop is formed when both feet touch the ground. As
another example, suppose that two robot manipulators, such as the Puma 560
from Example 3.4, cooperate together to carry an object. If each robot grasps the
same object with its hand, then a loop will be formed. A complicated example
of this was shown in Figure 1.5, in which mobile robots moved a piano. Outside
of robotics, a large fraction of organic molecules have flexible loops. Exploring
the space of their conformations requires careful consideration of the difficulties
imposed by these loops.

The main difficulty of working with closed kinematic chains is that it is hard
to determine which parameter values are within an acceptable range to ensure
closure. If these values are given, then the transformations are handled in the
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A5
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Figure 3.27: Loops may be opened to enable tree-based transformations to be
applied; however, a closure constraint must still be satisfied.

same way as the case of trees. For example, the links in Figure 3.26 may be
transformed by breaking the loop into two different chains. Suppose we forget
that the joint between A5 and A6 exists, as shown in Figure 3.27. Consider two
different kinematic chains that start at the joint on the extreme left. There is an
upper chain from A1 to A5 and a lower chain from A10 to A6. The transformations
for any of these bodies can be obtained directly from the techniques of Section
3.3.1. Thus, it is easy to transform the bodies, but how do we choose parameter
values that ensure A5 and A6 are connected at their common joint? Using the
upper chain, the position of this joint may be expressed as

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)





a5
0
1



 , (3.79)

in which (a5, 0) ∈ A5 is the location of the joint of A5 that is supposed to connect
to A6. The position of this joint may also be expressed using the lower chain as

T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)





a6
0
1



 , (3.80)

with (a6, 0) representing the position of the joint in the body frame of A6. If
the loop does not have to be maintained, then any values for θ1, . . ., θ10 may be
selected, resulting in ten degrees of freedom. However, if a loop must maintained,
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then (3.79) and (3.80) must be equal,

T1(θ1)T2(θ2)T3(θ3)T4(θ4)T5(θ5)





a5
0
1



 = T10(θ10)T9(θ9)T8(θ8)T7(θ7)T6(θ6)





a6
0
1



 ,

(3.81)
which is quite a mess of nonlinear, trigonometric equations that must be solved.
The set of solutions to (3.81) could be very complicated. For the example, the
true degrees of freedom is eight because two were removed by making the joint
common. Since the common joint allows the links to rotate, exactly two degrees of
freedom are lost. If A5 and A6 had to be rigidly attached, then the total degrees
of freedom would be only seven. For most problems that involve loops, it will not
be possible to obtain a nice parameterization of the set of solutions. This a form
of the well-known inverse kinematics problem [252, 693, 775, 994].

In general, a complicated arrangement of links can be imagined in which there
are many loops. Each time a joint along a loop is “ignored,” as in the procedure
just described, then one less loop exists. This process can be repeated iteratively
until there are no more loops in the graph. The resulting arrangement of links
will be a tree for which the previous techniques of this section may be applied.
However, for each joint that was “ignored” an equation similar to (3.81) must be
introduced. All of these equations must be satisfied simultaneously to respect the
original loop constraints. Suppose that a set of value parameters is already given.
This could happen, for example, using motion capture technology to measure
the position and orientation of every part of a human body in contact with the
ground. From this the solution parameters could be computed, and all of the
transformations are easy to represent. However, as soon as the model moves, it
is difficult to ensure that the new transformations respect the closure constraints.
The foot of the digital actor may push through the floor, for example. Further
information on this problem appears in Section 4.4.

3.5 Nonrigid Transformations

One can easily imagine motion planning for nonrigid bodies. This falls outside
of the families of transformations studied so far in this chapter. Several kinds of
nonrigid transformations are briefly surveyed here.

Linear transformations A rotation is a special case of a linear transformation,
which is generally expressed by an n×n matrix, M , assuming the transformations
are performed over Rn. Consider transforming a point (x, y) in a 2D robot, A, as

(
m11 m12

m21 m22

)(
x
y

)

. (3.82)

If M is a rotation matrix, then the size and shape of A will remain the same. In
some applications, however, it may be desirable to distort these. The robot can
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Figure 3.28: Shearing transformations may be performed.

be scaled by m11 along the x-axis and m22 along the y-axis by applying

(
m11 0
0 m22

)(
x
y

)

, (3.83)

for positive real values m11 and m22. If one of them is negated, then a mirror
image of A is obtained. In addition to scaling, A can be sheared by applying

(
1 m12

0 1

)(
x
y

)

(3.84)

for m12 6= 0. The case of m12 = 1 is shown in Figure 3.28.
The scaling, shearing, and rotation matrices may be multiplied together to

yield a general transformation matrix that explicitly parameterizes each effect. It
is also possible to extend the M from n × n to (n + 1) × (n + 1) to obtain a
homogeneous transformation matrix that includes translation. Also, the concepts
extend in a straightforward way to R3 and beyond. This enables the additional
effects of scaling and shearing to be incorporated directly into the concepts from
Sections 3.2-3.4.

Flexible materials In some applications there is motivation to move beyond
linear transformations. Imagine trying to warp a flexible material, such as a mat-
tress, through a doorway. The mattress could be approximated by a 2D array of
links; however, the complexity and degrees of freedom would be too cumbersome.
For another example, suppose that a snake-like robot is designed by connecting
100 revolute joints together in a chain. The tools from Section 3.3 may be used
to transform it with 100 rotation parameters, θ1, . . ., θ100, but this may become
unwieldy for use in a planning algorithm. An alternative is to approximate the
snake with a deformable curve or shape.

For problems such as these, it is desirable to use a parameterized family of
curves or surfaces. Spline models are often most appropriate because they are de-
signed to provide easy control over the shape of a curve through the adjustment of
a small number of parameters. Other possibilities include the generalized-cylinder
and superquadric models that were mentioned in Section 3.1.3.

One complication is that complicated constraints may be imposed on the space
of allowable parameters. For example, each joint of a snake-like robot could have a



122 S. M. LaValle: Planning Algorithms

small range of rotation. This would be easy to model using a kinematic chain; how-
ever, determining which splines from a spline family satisfy this extra constraint
may be difficult. Likewise, for manipulating flexible materials, there are usually
complicated constraints based on the elasticity of the material. Even determining
its correct shape under the application of some forces requires integration of an
elastic energy function over the material [577].

Further Reading

Section 3.1 barely scratches the surface of geometric modeling. Most literature focuses
on parametric curves and surfaces [376, 718, 788]. These models are not as popular
for motion planning because obtaining efficient collision detection is most important
in practice, and processing implicit algebraic surfaces is most important in theoretical
methods. A thorough coverage of solid and boundary representations, including semi-
algebraic models, can be found in [454]. Theoretical algorithm issues regarding semi-
algebraic models are covered in [704, 705]. For a comparison of the doubly connected
edge list to its variants, see [522].

The material of Section 3.2 appears in virtually any book on robotics, computer vi-
sion, or computer graphics. Consulting linear algebra texts may be helpful to gain more
insight into rotations. There are many ways to parameterize the set of all 3D rotation
matrices. The yaw-pitch-roll formulation was selected because it is the easiest to under-
stand. There are generally 12 different variants of the yaw-pitch-roll formulation (also
called Euler angles) based on different rotation orderings and axis selections. This for-
mulation, however, is not well suited for the development of motion planning algorithms.
It is easy (and safe) to use for making quick 3D animations of motion planning output,
but it incorrectly captures the structure of the state space for planning algorithms. Sec-
tion 4.2 introduces the quaternion parameterization, which correctly captures this state
space; however, it is harder to interpret when constructing examples. Therefore, it is
helpful to understand both. In addition to Euler angles and quaternions, there is still
motivation for using many other parameterizations of rotations, such as spherical coor-
dinates, Cayley-Rodrigues parameters, and stereographic projection. Chapter 5 of [210]
provides extensive coverage of 3D rotations and different parameterizations.

The coverage in Section 3.3 of transformations of chains of bodies was heavily influ-
enced by two classic robotics texts [252, 775]. The DH parameters were introduced in
[434] and later extended to trees and loops in [524]. An alternative to DH parameters is
exponential coordinates [725], which simplify some computations; however, determining
the parameters in the modeling stage may be less intuitive. A fascinating history of
mechanisms appears in [435]. Other texts on kinematics include [29, 310, 531, 689].
The standard approach in many robotics books [366, 856, 907, 994] is to introduce the
kinematic chain formulations and DH parameters in the first couple of chapters, and
then move on to topics that are crucial for controlling robot manipulators, including dy-
namics modeling, singularities, manipulability, and control. Since this book is concerned
instead with planning algorithms, we depart at the point where dynamics would usually
be covered and move into a careful study of the configuration space in Chapter 4.
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Exercises

1. Define a semi-algebraic model that removes a triangular “nose” from the region
shown in Figure 3.4.

2. For distinct values of yaw, pitch, and roll, it is possible to generate the same
rotation. In other words, R(α, β, γ) = R(α′, β′, γ′) for some cases in which at least
α 6= α, β 6= β′, or γ 6= γ′. Characterize the sets of angles for which this occurs.

3. Using rotation matrices, prove that 2D rotation is commutative but 3D rotation
is not.

4. An alternative to the yaw-pitch-roll formulation from Section 3.2.3 is considered
here. Consider the following Euler angle representation of rotation (there are many
other variants). The first rotation is Rz(γ), which is just (3.39) with α replaced by
γ. The next two rotations are identical to the yaw-pitch-roll formulation: Ry(β)
is applied, followed by Rz(α). This yields Reuler(α, β, γ) = Rz(α)Ry(β)Rz(γ).

(a) Determine the matrix Reuler.

(b) Show that Reuler(α, β, γ) = Reuler(α− π,−β, γ − π).

(c) Suppose that a rotation matrix is given as shown in (3.43). Show that the
Euler angles are

α = atan2(r23, r13), (3.85)

β = atan2(
√

1− r233, r33), (3.86)

and

γ = atan2(r32,−r31). (3.87)

5. There are 12 different variants of yaw-pitch-roll (or Euler angles), depending on
which axes are used and the order of these axes. Determine all of the possibilities,
using only notation such as Rz(α)Ry(β)Rz(γ) for each one. Give brief arguments
that support why or why not specific combinations of rotations are included in
your list of 12.

6. Let A be a unit disc, centered at the origin, and W = R2. Assume that A is
represented by a single, algebraic primitive, H = {(x, y) | x2+y2 ≤ 1}. Show that
the transformed primitive is unchanged after any rotation is applied.

7. Consider the articulated chain of bodies shown in Figure 3.29. There are three
identical rectangular bars in the plane, called A1,A2,A3. Each bar has width 2
and length 12. The distance between the two points of attachment is 10. The first
bar, A1, is attached to the origin. The second bar, A2, is attached to A1, and A3 is
attached to A2. Each bar is allowed to rotate about its point of attachment. The
configuration of the chain can be expressed with three angles, (θ1, θ2, θ3). The first
angle, θ1, represents the angle between the segment drawn between the two points
of attachment of A1 and the x-axis. The second angle, θ2, represents the angle
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Figure 3.29: A chain of three bodies.
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Figure 3.30: Another exercise involving a chain of bodies.

betweenA2 andA1 (θ2 = 0 when they are parallel). The third angle, θ3, represents
the angle between A3 and A2. Suppose the configuration is (π/4, π/2,−π/4).

(a) Use the homogeneous transformation matrices to determine the locations of
points a, b, and c.

(b) Characterize the set of all configurations for which the final point of attach-
ment (near the end of A3) is at (0, 0) (you should be able to figure this out
without using the matrices).

8. A three-link chain of bodies that moves in a 2D world is shown Figure 3.30. The
first link, A1, is attached at (0, 0) but can rotate. Each remaining link is attached
to another link with a revolute joint. The second link, A2, is a rigid ring, and the
other two links are rectangular bars.

Assume that the structure is shown in the zero configuration. Suppose that
the linkage is moved to the configuration (θ1, θ2, θ3) = (π4 ,

π
2 ,

π
4 ), in which θ1 is

the angle of A1, θ2 is the angle of A2 with respect to A1, and θ3 is the angle of
A3 with respect to A2. Using homogeneous transformation matrices, compute the
position of the point at (4, 0) in Figure 3.30, when the linkage is at configuration
(π4 ,

π
2 ,

π
4 ) (the point is attached to A3).

9. Approximate a spherical joint as a chain of three short, perpendicular links that
are attached by revolute joints and give the sequence of transformation matrices.
Show that as the link lengths approach zero, the resulting sequence of transforma-
tion matrices converges to exactly representing the freedom of a spherical joint.
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Compare this approach to directly using a full rotation matrix, (3.42), to represent
the joint in the homogeneous transformation matrix.

10. Figure 3.12 showed six different ways in which 2D surfaces can slide with respect
to each other to produce a joint.

(a) Suppose that two bodies contact each other along a one-dimensional curve.
Characterize as many different kinds of “joints” as possible, and indicate the
degrees of freedom of each.

(b) Suppose that the two bodies contact each other at a point. Indicate the types
of rolling and sliding that are possible, and their corresponding degrees of
freedom.

11. Suppose that two bodies form a screw joint in which the axis of the central axis of
the screw aligns with the x-axis of the first body. Determine an appropriate homo-
geneous transformation matrix to use in place of the DH matrix. Define the matrix
with the screw radius, r, and displacement-per-revolution, d, as parameters.

12. Recall Example 3.6. How should the transformations be modified so that the links
are in the positions shown in Figure 3.25 at the zero configuration (θi = 0 for every
revolute joint whose angle can be independently chosen)?

13. Generalize the shearing transformation of (3.84) to enable shearing of 3D models.

Implementations

14. Develop and implement a kinematic model for 2D linkages. Enable the user to
display the arrangement of links in the plane.

15. Implement the kinematics of molecules that do not have loops and show them
graphically as a “ball and stick” model. The user should be able to input the
atomic radii, bond connections, bond lengths, and rotation ranges for each bond.

16. Design and implement a software system in which the user can interactively attach
various links to make linkages that resemble those possible from using Tinkertoys
(or another popular construction set that allows pieces to move). There are several
rods of various lengths, which fit into holes in the center and around the edge of
several coin-shaped pieces. Assume that all joints are revolute. The user should
be allowed to change parameters and see the resulting positions of all of the links.

17. Construct a model of the human body as a tree of links in a 3D world. For
simplicity, the geometric model may be limited to spheres and cylinders. Design
and implement a system that displays the virtual human and allows the user to
click on joints of the body to enable them to rotate.

18. Develop a simulator with 3D graphics for the Puma 560 model shown in Figure
3.4.


