Chapter 10

Heaps

In this chapter, we discuss two implementations of the extremely useful
priority Queue data structure. Both of these structures are a special kind
of binary tree called a heap, which means “a disorganized pile.” This
is in contrast to binary search trees that can be thought of as a highly
organized pile.

The first heap implementation uses an array to simulate a complete bi-
nary tree. This very fast implementation is the basis of one of the fastest
known sorting algorithms, namely heapsort (see Section 11.1.3). The sec-
ond implementation is based on more flexible binary trees. It supports a
meld(h) operation that allows the priority queue to absorb the elements
of a second priority queue h.

10.1 BinaryHeap: An Implicit Binary Tree

Our first implementation of a (priority) Queue is based on a technique that
is over four hundred years old. Eytzinger’s method allows us to represent
a complete binary tree as an array by laying out the nodes of the tree in
breadth-first order (see Section 6.1.2). In this way, the root is stored at
position 0, the root’s left child is stored at position 1, the root’s right child
at position 2, the left child of the left child of the root is stored at position
3, and so on. See Figure 10.1.

If we apply Eytzinger’s method to a sufficiently large tree, some pat-
terns emerge. The left child of the node at index i is at index left(i) =
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Figure 10.1: Eytzinger’s method represents a complete binary tree as an array.

2i+1 and the right child of the node at index i is at index right(i) =
2i + 2. The parent of the node at index 1i is at index parent(i)=(i-1)/2.

BinaryHeap

int left(int i) {
return 2+xi + 1;
}
int right(int i) {
return 2xi + 2;
}
int parent(int i) {
return (i-1)/2;

}

A BinaryHeap uses this technique to implicitly represent a complete
binary tree in which the elements are heap-ordered: The value stored at
any index i is not smaller than the value stored at index parent(i), with
the exception of the root value, i = 0. It follows that the smallest value in
the priority Queue is therefore stored at position 0 (the root).

In a BinaryHeap, the n elements are stored in an array a:

BinaryHeap
Tl a;
int n;
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Implementing the add(x) operation is fairly straightforward. As with
all array-based structures, we first check to see if a is full (by checking if
a.length = n) and, if so, we grow a. Next, we place x at location a[n] and
increment n. At this point, all that remains is to ensure that we maintain
the heap property. We do this by repeatedly swapping x with its parent
until x is no longer smaller than its parent. See Figure 10.2.

BinaryHeap

boolean add(T x) {
if (n + 1 > a.length) resize();
a[n++] = x;
bubbleUp(n-1);
return true;
}
void bubbleUp(int i) {
int p = parent(i);
while (i > 0 && compare(al[i], a[p]) < 0) {
swap(i,p);
i=p;
p = parent(i);
}
}

Implementing the remove() operation, which removes the smallest
value from the heap, is a little trickier. We know where the smallest value
is (at the root), but we need to replace it after we remove it and ensure
that we maintain the heap property.

The easiest way to do this is to replace the root with the value a[n— 1],
delete that value, and decrement n. Unfortunately, the new root element
is now probably not the smallest element, so it needs to be moved down-
wards. We do this by repeatedly comparing this element to its two chil-
dren. If it is the smallest of the three then we are done. Otherwise, we
swap this element with the smallest of its two children and continue.

BinaryHeap

T remove() {
T x = a[0];
a[0] = a[--n];
trickleDown(0);

213



§10.1 Heaps
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Figure 10.2: Adding the value 6 to a BinaryHeap.

214



BinaryHeap: An Implicit Binary Tree §10.1

if (3*n < a.length) resize();
return x;
}
void trickleDown(int i) {
do {
int j = -1;
int r = right(i);
if (r < n && compare(al[r], a[i]) < 0) {
int 1 = left(i);
if (compare(all], a[r]) < 0) {

Al

i=1
} else {
j=r;
}
} else {
int 1 = left(i);
if (1 < n && compare(al[l], al[i]) < 0) {
=1
}
}
if (j >=0) swap(i, j);
i=1j;

} while (i >= 0);
}

As with other array-based structures, we will ignore the time spent
in calls to resize(), since these can be accounted for using the amortiza-
tion argument from Lemma 2.1. The running times of both add(x) and
remove() then depend on the height of the (implicit) binary tree. Luckily,
this is a complete binary tree; every level except the last has the maximum
possible number of nodes. Therefore, if the height of this tree is h, then it
has at least 2" nodes. Stated another way

n>2" .
Taking logarithms on both sides of this equation gives
h<logn .

Therefore, both the add(x) and remove() operation run in O(logn) time.
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Figure 10.3: Removing the minimum value, 4, from a BinaryHeap.
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10.1.1 Summary

The following theorem summarizes the performance of a BinaryHeap:

Theorem 10.1. A BinaryHeap implements the (priority) Queue interface.
Ignoring the cost of calls to resize(), a BinaryHeap supports the operations
add(x) and remove() in O(logn) time per operation.

Furthermore, beginning with an empty BinaryHeap, any sequence of m
add(x) and remove() operations results in a total of O(m) time spent during
all calls to resize().

10.2 MeldableHeap: A Randomized Meldable Heap

In this section, we describe the MeldableHeap, a priority Queue imple-
mentation in which the underlying structure is also a heap-ordered bi-
nary tree. However, unlike a BinaryHeap in which the underlying binary
tree is completely defined by the number of elements, there are no re-
strictions on the shape of the binary tree that underlies a MeldableHeap;
anything goes.

The add(x) and remove() operations in a MeldableHeap are imple-
mented in terms of the merge(h1,h2) operation. This operation takes two
heap nodes h1and h2 and merges them, returning a heap node that is the
root of a heap that contains all elements in the subtree rooted at h1 and
all elements in the subtree rooted at h2.

The nice thing about a merge(h1,h2) operation is that it can be defined
recursively. See Figure 10.4. If either h1or h2 is nil, then we are merging
with an empty set, so we return h2 or h1, respectively. Otherwise, assume
h1.x < h2.x since, if h1.x > h2.x, then we can reverse the roles of h1 and
h2. Then we know that the root of the merged heap will contain h1.x, and
we can recursively merge h2 with h1.1eft or h1.right, as we wish. This
is where randomization comes in, and we toss a coin to decide whether to
merge h2 with h1.1left or hl.right:

MeldableHeap
Node<T> merge(Node<T> h1, Node<T> h2) {
if (h1 == nil) return h2;
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hi merge(h1,h2)

merge(hl.right, h2)

Figure 10.4: Merging h1 and h2 is done by merging h2 with one of h1.left or
hl.right.

if (h2 == nil) return hi;
if (compare(h2.x, h1.x) < 0) return merge(h2, h1);
[/ now we know h1l.x <= h2.x
if (rand.nextBoolean()) {
h1.left = merge(hl.left, h2);
h1.left.parent = hi;
} else {
h1.right = merge(hl.right, h2);
h1.right.parent = hi;
}

return ht;

In the next section, we show that merge(h1,h2) runs in O(logn) ex-
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pected time, where n is the total number of elements in h1 and h2.

With access to a merge(h1,h2) operation, the add(x) operation is easy.
We create a new node u containing x and then merge u with the root of
our heap:

MeldableHeap

boolean add(T x) {
Node<T> u = newNode();
u.x = X;
r = merge(u, r);
r.parent = nil;
n++;
return true;

}

This takes O(log(n + 1)) = O(logn) expected time.
The remove() operation is similarly easy. The node we want to remove
is the root, so we just merge its two children and make the result the root:

MeldableHeap
T remove() {

T x =r.x;

r = merge(r.left, r.right);

if (r !'= nil) r.parent = nil;

n--;

return x;

Again, this takes O(logn) expected time.
Additionally, a MeldableHeap can implement many other operations
in O(logn) expected time, including:

* remove(u): remove the node u (and its key u.x) from the heap.

* absorb(h): add all the elements of the MeldableHeap h to this heap,
emptying h in the process.

Each of these operations can be implemented using a constant number of
merge(h1,h2) operations that each take O(logn) expected time.
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10.2.1 Analysis of merge(h1,h2)

The analysis of merge(h1,h2) is based on the analysis of a random walk in
a binary tree. A random walk in a binary tree starts at the root of the tree.
At each step in the random walk, a coin is tossed and, depending on the
result of this coin toss, the walk proceeds to the left or to the right child
of the current node. The walk ends when it falls off the tree (the current
node becomes nil).

The following lemma is somewhat remarkable because it does not de-
pend at all on the shape of the binary tree:

Lemma 10.1. The expected length of a random walk in a binary tree with n
nodes is at most log(n + 1).

Proof. The proof is by induction on n. In the base case, n = 0 and the
walk has length 0 =log(n+ 1). Suppose now that the result is true for all
non-negative integers n” <n.

Let n; denote the size of the root’s left subtree, so that n, =n—-n; —1
is the size of the root’s right subtree. Starting at the root, the walk takes
one step and then continues in a subtree of size n; or n,. By our inductive
hypothesis, the expected length of the walk is then

E[W]=1+ %log(nl +1)+ %log(nz +1),

since each of n; and n, are less than n. Since log is a concave function,
E[W] is maximized when n; = n, = (n—1)/2. Therefore, the expected
number of steps taken by the random walk is

E[W]=1+ %log(nl +1)+ %10g(n2+1)
<1l+log((n—-1)/2+1)
=1+log((n+1)/2)
=log(n+1) . O

We make a quick digression to note that, for readers who know a little
about information theory, the proof of Lemma 10.1 can be stated in terms
of entropy.
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Information Theoretic Proof of Lemma 10.1. Let d; denote the depth of the
ith external node and recall that a binary tree with n nodes has n + 1 exter-
nal nodes. The probability of the random walk reaching the ith external
node is exactly p; = 1/2%, so the expected length of the random walk is
given by

n n n
H=) pidi=) pilog(2)=) pilog(1/pi)
i=0 i=0 i=0

The right hand side of this equation is easily recognizable as the entropy
of a probability distribution over n + 1 elements. A basic fact about the
entropy of a distribution over n+ 1 elements is that it does not exceed
log(n+ 1), which proves the lemma. O

With this result on random walks, we can now easily prove that the
running time of the merge(h1,h2) operation is O(logn).

Lemma 10.2. If h1 and h2 are the roots of two heaps containing ny and n,
nodes, respectively, then the expected running time of merge(h1,h2) is at most
O(logn), where n = ny +n,.

Proof. Each step of the merge algorithm takes one step of a random walk,
either in the heap rooted at h1 or the heap rooted at h2. The algorithm
terminates when either of these two random walks fall out of its corre-
sponding tree (when h1 = null or h2 = null). Therefore, the expected
number of steps performed by the merge algorithm is at most

log(ny +1)+1log(ny, +1) <2logn . O

10.2.2 Summary
The following theorem summarizes the performance of a MeldableHeap:
Theorem 10.2. A MeldableHeap implements the (priority) Queue interface.

A MeldableHeap supports the operations add(x) and remove() in O(logn)
expected time per operation.
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10.3 Discussion and Exercises

The implicit representation of a complete binary tree as an array, or list,
seems to have been first proposed by Eytzinger [27]. He used this rep-
resentation in books containing pedigree family trees of noble families.
The BinaryHeap data structure described here was first introduced by
Williams [78].

The randomized MeldableHeap data structure described here appears
to have first been proposed by Gambin and Malinowski [34]. Other meld-
able heap implementations exist, including leftist heaps [16, 48, Sec-
tion 5.3.2], binomial heaps [75], Fibonacci heaps [30], pairing heaps [29],
and skew heaps [72], although none of these are as simple as the Meld-
ableHeap structure.

Some of the above structures also support a decreaseKey(u,y) oper-
ation in which the value stored at node u is decreased to y. (It is a pre-
condition that y < u.x.) In most of the preceding structures, this opera-
tion can be supported in O(logn) time by removing node u and adding
y. However, some of these structures can implement decreaseKey(u,y)
more efficiently. In particular, decreaseKey(u,y) takes O(1) amortized
time in Fibonacci heaps and O(loglogn) amortized time in a special ver-
sion of pairing heaps [25]. This more efficient decreaseKey(u,y) opera-
tion has applications in speeding up several graph algorithms, including
Dijkstra’s shortest path algorithm [30].

Exercise 10.1. Illustrate the addition of the values 7 and then 3 to the
BinaryHeap shown at the end of Figure 10.2.

Exercise 10.2. Illustrate the removal of the next two values (6 and 8) on
the BinaryHeap shown at the end of Figure 10.3.

Exercise 10.3. Implement the remove(i) method, that removes the value
stored in a[i] in a BinaryHeap. This method should run in O(logn) time.
Next, explain why this method is not likely to be useful.

Exercise 10.4. A d-ary tree is a generalization of a binary tree in which
each internal node has d children. Using Eytzinger’s method it is also
possible to represent complete d-ary trees using arrays. Work out the
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equations that, given an index i, determine the index of i’s parent and
each of i’s d children in this representation.

Exercise 10.5. Using what you learned in Exercise 10.4, design and im-
plement a DaryHeap, the d-ary generalization of a BinaryHeap. Analyze
the running times of operations on a DaryHeap and test the performance
of your DaryHeap implementation against that of the BinaryHeap imple-
mentation given here.

Exercise 10.6. Illustrate the addition of the values 17 and then 82 in the
MeldableHeap h1shown in Figure 10.4. Use a coin to simulate a random
bit when needed.

Exercise 10.7. Illustrate the removal of the next two values (4 and 8)
in the MeldableHeap h1 shown in Figure 10.4. Use a coin to simulate a
random bit when needed.

Exercise 10.8. Implement the remove(u) method, that removes the node
u from a MeldableHeap. This method should run in O(logn) expected
time.

Exercise 10.9. Show how to find the second smallest value in a Binary-
Heap or MeldableHeap in constant time.

Exercise 10.10. Show how to find the kth smallest value in a BinaryHeap
or MeldableHeap in O(klogk) time. (Hint: Using another heap might
help.)

Exercise 10.11. Suppose you are given k sorted lists, of total length n. Us-
ing a heap, show how to merge these into a single sorted list in O(nlogk)
time. (Hint: Starting with the case k = 2 can be instructive.)
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