Chapter O

L]
Introduction
Concepts: This is an important notice.
> Approaches to this material Please have it translated.
> Principles —The Phone Company

YOUR MOTHER probably provided you with constructive toys, like blocks or
Tinkertoy or Lego bricks. These toys are educational: they teach us to think
spatially and to build increasingly complex structures. You develop modules
that can be stuck together and rules that guide the building process.

If you are reading this book, you probably enjoyed playing with construc-
tive toys. You consider writing programs an artistic process. You have grown
from playing with blocks to writing programs. The same guidelines for building
structures apply to writing programs, save one thing: there is, seemingly, no
limit to the complexity of the programs you can write.

Well, almost. When writing large programs, the data structures that main-
tain the data in your program govern the space and time consumed by your
running program. In addition, large programs take time to write. Using differ-
ent structures can actually have an impact on how long it takes to write your
program. Choosing the wrong structures can cause your program to run poorly
or be difficult or impossible to implement effectively.

Thus, part of the program-writing process is choosing between different
structures. Ideally you arrive at solutions by analyzing and comparing their
various merits. This book focuses on the creation and analysis of traditional
data structures in a modern programming environment, The Java Programming
Language, or Java for short.

0.1 Read Me

As might be expected, each chapter is dedicated to a specific topic. Many of the
topics are concerned with specific data structures. The structures we will inves-
tigate are abstracted from working implementations in Java that are available
to you if you have access to the InternetE] Other topics concern the “tools of the

L All trademarks are recognized.
2 For more information, see http://www.cs.williams.edu/JavaStructures.

I lie.

Introduction

Unicycles: the
ultimate riding
structure.

Example

trade.” Some are mathematical and others are philosophical, but all consider
the process of programming well.

The topics we cover are not all-inclusive. Some useful structures have been
left out. Instead, we will opt to learn the principles of programming data struc-
tures, so that, down the road, you can design newer and better structures your-
self.

Perhaps the most important aspect of this book is the set of problems at the
end of each section. All are important for you to consider. For some problems
I have attempted to place a reasonable hint or answer in the back of the book.
Why should you do problems? Practice makes perfect. I could show you how to
ride a unicycle, but if you never practiced, you would never learn. If you study
and understand these problems, you will find your design and analytical skills
are improved. As for your mother, she’ll be proud of you.

Sometimes we will introduce problems in the middle of the running text—
these problems do not have answers (sometimes they are repeated as formal
problems in the back of the chapter, where they do have answers)—they should
be thought about carefully as you are reading along. You may find it useful to
have a pencil and paper handy to help you “think” about these problems on the
fly.

Exercise 0.1 Calﬁ your Mom and tell her you’re completing your first exercise. If
you don’t have a phone handy, drop her a postcard. Ask her to verify that she’s
proud of you.

This text is brief and to the point. Most of us are interested in experimenting.
We will save as much time as possible for solving problems, perusing code, and
practicing writing programs. As you read through each of the chapters, you
might find it useful to read through the source code online. As we first consider
the text of files online, the file name will appear in the margin, as you see here.
The top icon refers to files in the structure package, while the bottom icon
refers to files supporting examples.

One more point—this book, like most projects, is an ongoing effort, and
the latest thoughts are unlikely to have made it to the printed page. If you
are in doubt, turn to the website for the latest comments. You will also find
online documentation for each of the structures, generated from the code using
javadoc. It is best to read the online version of the documentation for the
most up-to-date details, as well as the documentation of several structures not
formally presented within this text.

0.2 He Can’t Say That, Can He?

Sure! Throughout this book are little political comments. These remarks may
seem trivial at first blush. Skip them! If, however, you are interested in ways

3 Don’t e-mail her. Call her. Computers aren’t everything, and they’re a poor medium for a mother’s
pride.

0.2 He Can’t Say That, Can He?

to improve your skills as a programmer and a computer scientist, I invite you
to read on. Sometimes these comments are so important that they appear as
principles:

Principle 1 The principled programmer understands a principle well enough to
form an opinion about it.

Self Check Problems

Solutions to these problems begin on page (441

0.1 Where are the answers for “self check” problems found?
0.2 What are features of large programs?

0.3 Should you read the entire text?

0.4 Are principles statements of truth?

Problems

Solutions to the odd-numbered problems begin on page

0.1 All odd problems have answers. Where do you find answers to prob-
lems? (Hint: See page)
0.2 You are an experienced programmer. What five serious pieces of advice

would you give a new programmer?

0.3 Surf to the website associated with this text and review the resources
available to you.

0.4 Which of the following structures are described in this text (see Append-
ix D): BinarySearchTree, BinaryTree, BitSet, Map, Hashtable, List?

0.5 Surf to http://www. javasoft.com and review the Java resources avail-
able from Sun, the developers of Java.

0.6 Review documentation for Sun’s java.util package. (See the Core
API Documentation at http://www.javasoft.com.) Which of the following
data structures are available in this package: BinarySearchTree, BinaryTree,
BitSet, Dictionary, Hashtable, List?

0.7 Check your local library or bookstore for Java reference texts.

0.8 If you haven’t done so already, learn how to use your local Java pro-
gramming environment by writing a Java application to write a line of text.
(Hint: Read Appendix [B])

0.9 Find the local documentation for the structure package. If none is to
be found, remember that the same documentation is available over the Internet
from http://www.cs.williams.edu/JavaStructures.

0.10 Find the examples electronically distributed with the structure pack-
age. Many of these examples are discussed later in this text.

