
Part III
Working with the Big Picture:
Object-Oriented Programming

	 Check out the article “Classes and Objects” (and more) online at www.dummies.
com/extras/javaprogrammingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
	 ✓	 Understanding object-oriented programming (at last!)
	 ✓	 Reusing code
	 ✓	 Establishing lines of communication among the parts of

your app

Chapter 9

Why Object-Oriented Programming
Is Like Selling Cheese

In This Chapter
▶	The truth about object-oriented programming
▶	Why a class is actually a Java type
▶	An end to the mystery surrounding words like static

A
ndy’s Cheese and Java Emporium carries fine cheeses and freshly
brewed java from around the world (especially from Java in Indonesia).

The Emporium is in Cheesetown, Pennsylvania, a neighborhood along the
Edenville–Cheesetown Road in Franklin County.

The emporium sells cheese by the bag, each containing a certain variety,
such as Cheddar, Swiss, Munster, or Limburger. Bags are labeled by weight
and by the number of days the cheese was aged (admittedly, an approximation).
Bags also carry the label Domestic or Imported, depending on the cheese’s
country of origin.

Before starting up the emporium, Andy had lots of possessions — material
and otherwise. He had a family, a cat, a house, an abandoned restaurant
property, a bunch of restaurant equipment, a checkered past, and a mountain
of debt. But for the purpose of this narrative, Andy had only one thing: a
form. Yes, Andy had developed a form for keeping track of his emporium’s
inventory. The form is shown in Figure 9-1.

	

Figure 9-1:
An online

form.
	

220 Part III: Working with the Big Picture: Object-Oriented Programming

Exactly one week before the emporium’s grand opening, Andy’s supplier
delivered one bag of cheese. Andy entered the bag’s information into the
inventory form. The result is shown in Figure 9-2.

	

Figure 9-2:
A virtual bag

of cheese.
	

Andy had only a form and a bag of cheese (which isn’t much to show for all
his hard work), but the next day the supplier delivered five more bags of
cheese. Andy’s second entry looked like the one shown in Figure 9-3, and the
next several entries looked similar.

	

Figure 9-3:
Another vir-

tual bag of
cheese.

	

At the end of the week, Andy was giddy: He had exactly one inventory form
and six bags of cheese.

The story doesn’t end here. As the grand opening approached, Andy’s sup-
plier brought many more bags so that, eventually, Andy had his inventory
form and several hundred bags of cheese. The business even became an icon
on Interstate Highway 81 in Cheesetown, Pennsylvania. But as far as you’re
concerned, the business had, has, and always will have only one form and
any number of cheese bags.

That’s the essence of object-oriented programming!

221 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Classes and Objects
Java is an object-oriented programming language. A program that you create
in Java consists of at least one class.

A class is like Andy’s blank form, described in this chapter’s introduction.
That is, a class is a general description of some kind of thing. In the intro-
duction to this chapter, the class (the form) describes the characteristics
that any bag of cheese possesses. But imagine other classes. For example,
Figure 9-4 illustrates a bank account class:

	

Figure 9-4:
A bank

account
class.

	

Figure 9-5 illustrates a sprite class, which is a class for a character in a com-
puter game:

	

Figure 9-5:
A sprite

class.
	

222 Part III: Working with the Big Picture: Object-Oriented Programming

What is a class, really?
In practice, a class doesn’t look like any of the forms in Figures 9-1 through
9-5. In fact, a class doesn’t look like anything. Instead, a Java class is a bunch
of text describing the kinds of things that I refer to as “blanks to be filled in.”
Listing 9-1 contains a real Java class — the kind of class you write when you
program in Java.

Listing 9-1:   A Class in the Java Programming Language
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;
}

	 As a developer, your primary job is to create classes. You don’t develop
attractive online forms like the form in Figure 9-1. Instead, you write Java
language code — code containing descriptions, like the one in Listing 9-1.

Compare Figure 9-1 with Listing 9-1. In what ways are they the same, and in
what ways are they different? What does one have that the other doesn’t
have?

	 ✓	The form in Figure 9-1 appears on a user’s screen. The code in
Listing 9-1 does not.

		 A Java class isn’t necessarily tied to a particular display. Yes, you can
display a bank account on a user’s screen. But the bank account isn’t a
bunch of items on a computer screen — it’s a bunch of information in
the bank’s computers.

		 In fact, some Java classes are difficult to visualize. Android’s SQLite
OpenHelper class assists developers in the creation of databases. An
SQLiteOpenHelper doesn’t look like anything in particular, and
certainly not an online form or a bag of cheese.

	 ✓	Online forms appear in some contexts but not in others. In contrast,
classes affect every part of every Java program’s code.

		 Forms show up on web pages, in dialog boxes, and in other situations.
But when you use a word processing program to type a document, you
deal primarily with free-form input. I didn’t write this paragraph by
filling in some blanks. (Heaven knows! I wish I could!)

223 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

		 The paragraphs I’ve written started out as part of a document in an
Android word processing application. In the document, every paragraph
has its own alignment, borders, indents, line spacing, styles, and many
other characteristics. As a Java class, a list of paragraph characteristics
might look something like this:
class Paragraph {
 int alignment;
 int borders;
 double leftIndent;
 double lineSpacing;
 int style;
}

		 When I create a paragraph, I don’t fill in a form. Instead, I type words,
and the underlying word processing app deals silently with its
Paragraph class.

	 ✓	The form shown in Figure 9-1 contains several fields, and so does the
code in Listing 9-1.

		 In an online form, a field is a blank space — a place that’s eventually
filled with specific information. In Java, a field is any characteristic that
you (the developer) attribute to a class. The BagOfCheese class in
Listing 9-1 has four fields, and each of the four fields has a name: kind,
weight, daysAged, or isDomestic.

		 Like an online form, a Java class describes items by listing the
characteristics that each of the items has. Both the form in Figure 9-1
and the code in Listing 9-1 say essentially the same thing: Each bag of
cheese has a certain kind of cheese, a certain weight, a number of days
that the cheese was aged, and a domestic-or-imported characteristic.

	 ✓	The code in Listing 9-1 describes exactly the kind of information that
belongs in each blank space. The form in Figure 9-1 is much more
permissive.

		 Nothing in Figure 9-1 indicates what kinds of input are permitted in the
Weight field. The weight in pounds can be a whole number (0, 1, 2, and
so on) or a decimal number (such as 3.14159, the weight of a big piece
of “pie”). What happens if the user types the words three pounds into
the form in Figure 9-1? Does the form accept this input, or does the
computer freeze up? A developer can add extra code to test for valid
input in a form, but, on its own, a form cares little about the kind of
input that the user enters.

		 In contrast, the code in Listing 9-1 contains this line:
double weight;

224 Part III: Working with the Big Picture: Object-Oriented Programming

		 This line tells Java that every bag of cheese has a characteristic named
weight and that a bag’s weight must be of type double. Similarly, each
bag’s daysAged value is an int, each bag’s isDomestic value is
boolean, and each bag’s kind value has the type String.

		 The unfortunate pun in the previous paragraph makes life more difficult
for me, the author! A Java String has nothing to do with the kind of
cheese that peels into strips. A Java String is a sequence of characters,
like the sequence “Cheddar” or the sequence “qwoiehasljsal” or
the sequence “Go2theMoon!”. So the String kind line in Listing 9-1
indicates that a bag of cheese might contain “Cheddar”, but it might
also contain “qwoiehasljsal” cheese or “Go2theMoon!” cheese.
Well, that’s what happens when Andy starts a business from scratch.

What is an object?
At the start of this chapter’s detailed Cheese Emporium exposé, Andy had
nothing to his name except an online form — the form in Figure 9-1. Life was
simple for Andy and his dog Fido. But eventually the suppliers delivered bags
of cheese. Suddenly, Andy had more than just an online form —he had things
whose characteristics matched the fields in the form. One bag had the
characteristics shown in Figure 9-2; another bag had the characteristics
shown in Figure 9-3.

In the terminology of object-oriented programming, each bag of cheese is an
object, and each bag of cheese is an instance of the class in Listing 9-1.

You can also think of classes and objects as part of a hierarchy. The
BagOfCheese class is at the top of the hierarchy, and each instance of the
class is attached to the class itself. See Figures 9-6 and 9-7.

	

Figure 9-6:
First, Andy

has a class.
	

	 The diagrams in Figures 9-6 and 9-7 are part of the standardized Unified
Modeling Language (UML). For more info about UML, visit www.omg.org/
spec/UML/.

http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/

225 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	

Figure 9-7:
Later, Andy
has a class

and two
objects.

	

	 An object is a particular thing. (For Andy, an object is a particular bag of
cheese.) A class is a description with blanks to be filled in. (For Andy, a class
is a form with four blank fields: a field for the kind of cheese, another field for
the cheese’s weight, a third field for the number of days aged, and a fourth
field for the Domestic-or-Imported designation.)

And don’t forget: Your primary job is to create classes. You don’t develop
attractive online forms like the form in Figure 9-1. Instead, you write Java
language code — code containing descriptions, like the one in Listing 9-1.

Creating objects
Listing 9-2 contains real-life Java code to create two objects — two instances
of the class in Listing 9-1.

Listing 9-2:   Creating Two Objects
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 = new BagOfCheese();
 bag1.kind = “Cheddar”;
 bag1.weight = 2.43;
 bag1.daysAged = 30;

(continued)

226 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9‑2 (continued)
 bag1.isDomestic = true;

 BagOfCheese bag2 = new BagOfCheese();
 bag2.kind = “Blue”;
 bag2.weight = 5.987;
 bag2.daysAged = 90;
 bag2.isDomestic = false;

 JOptionPane.showMessageDialog(null,
 bag1.kind + “, “ +
 bag1.weight + “, “ +
 bag1.daysAged + “, “ +
 bag1.isDomestic);

 JOptionPane.showMessageDialog(null,
 bag2.kind + “, “ +
 bag2.weight + “, “ +
 bag2.daysAged + “, “ +
 bag2.isDomestic);
 }
}

A run of the code in Listing 9-2 is shown in Figure 9-8.

	

Figure 9-8:
Running the

code from
Listing 9-2.

	

	 To vary the terminology, I might say that the code in Listing 9-2 creates
“two BagOfCheese objects” or “two BagOfCheese instances,” or I might
say that the new BagOfCheese() statements in Listing 9-2 instantiate the
BagOfCheese class. One way or another, Listing 9-1 declares the existence of
one class, and Listing 9-2 declares the existence of two objects.

	 In Listing 9-2, each use of the words new BagOfCheese() is a constructor call.
For details, see the “Calling a constructor” section later in this chapter.

227 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	 To run the code in Listing 9-2, you put two Java files (BagOfCheese.java
from Listing 9-1 and CreateBags.java from Listing 9-2) in the same Eclipse
project.

In Listing 9-2, I use ten statements to create two bags of cheese. The first
statement (BagOfCheese bag1 = new BagOfCheese()) does three
things:

	 ✓	With the words
BagOfCheese bag1

		 the first statement declares that the variable bag1 refers to a bag of
cheese.

	 ✓	With the words
new BagOfCheese()

		 the first statement creates a bag with no particular cheese in it. (If it
helps, you can think of it as an empty bag reserved for eventually
storing cheese.)

	 ✓	Finally, with the equal sign, the first statement makes the bag1 variable
refer to the newly created bag.

The next four statements in Listing 9-2 assign values to the fields of bag1:

bag1.kind = “Cheddar”;
bag1.weight = 2.43;
bag1.daysAged = 30;
bag1.isDomestic = true;

	 To refer to one of an object’s fields, follow a reference to the object with a dot
and then the field’s name. (For example, follow bag1 with a dot, and then the
field name kind.)

The next five statements in Listing 9-2 do the same for a second variable,
bag2, and a second bag of cheese.

Reusing names
In Listing 9-2, I declare two variables — bag1 and bag2 — to refer to two
different BagOfCheese objects. That’s fine. But sometimes having only one
variable and reusing it for the second object works just as well, as shown in
Listing 9-3.

228 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9-3:   Reusing the bag Variable
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag = new BagOfCheese();
 bag.kind = “Cheddar”;
 bag.weight = 2.43;
 bag.daysAged = 30;
 bag.isDomestic = true;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);

 bag = new BagOfCheese();
 bag.kind = “Blue”;
 bag.weight = 5.987;
 bag.daysAged = 90;
 bag.isDomestic = false;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

In Listing 9-3, when the computer executes the second bag = new
BagOfCheese() statement, the old object (the bag containing cheddar) has
disappeared. Without bag (or any other variable) referring to that cheddar
object, there’s no way your code can do anything with the cheddar object.
Fortunately, by the time you reach the second bag = new BagOfCheese()
statement, you’re finished doing everything you want to do with the original
cheddar bag. In this case, reusing the bag variable is acceptable.

	 When you reuse a variable (like the one and only bag variable in Listing 9-3),
you do so by using an assignment statement, not an initialization. In other
words, you don’t write BagOfCheese bag a second time in your code. If you
do, you see error messages in the Eclipse editor.

229 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	 To be painfully precise, you can, in fact, write BagOfCheese bag more than
once in the same piece of code. For an example, see the use of shadowing later
in this chapter, in the “Constructors with parameters” section.

In Listing 9-1, none of the BagOfCheese class’s fields is final. In other
words, the class’s code lets you reassign values to the fields inside a
BagOfCheese object. With this information in mind, you can shorten the
code in Listing 9-3 even more, as shown in Listing 9-4.

Listing 9-4:   Reusing a bag Object’s Fields
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag = new BagOfCheese();
 bag.kind = “Cheddar”;
 bag.weight = 2.43;
 bag.daysAged = 30;
 bag.isDomestic = true;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);

 // bag = new BagOfCheese();
 bag.kind = “Blue”;
 bag.weight = 5.987;
 bag.daysAged = 90;
 bag.isDomestic = false;

 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

With the second constructor call in Listing 9-4 commented out, you don’t
make the bag variable refer to a new object. Instead, you economize by
assigning new values to the existing object’s fields.

230 Part III: Working with the Big Picture: Object-Oriented Programming

In some situations, reusing an object’s fields can be more efficient (quicker
to execute) than creating a new object. But whenever I have a choice, I prefer
to write code that mirrors real data. If an actual bag’s content doesn’t change
from cheddar cheese to blue cheese, I prefer not to change a BagOfCheese
object’s kind field from “Cheddar” to “Blue”.

Calling a constructor
In Listing 9-2, the words new BagOfCheese() look like method calls, but
they aren’t — they’re constructor calls. A constructor call creates a new
object from an existing class. You can spot a constructor call by noticing that

	 ✓	A constructor call starts with Java’s new keyword:
new BagOfCheese()

		 and

	 ✓	A constructor call’s name is the name of a Java class:
new BagOfCheese()

When the computer encounters a method call, the computer executes the
statements inside a method’s declaration. Similarly, when the computer
encounters a constructor call, the computer executes the statements inside
the constructor’s declaration. When you create a new class (as I did in
Listing 9-1), Java can create a constructor declaration automatically. If you
want, you can type the declaration’s code manually. Listing 9-5 shows you
what the declaration’s code would look like:

Listing 9-5:   The Parameterless Constructor
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }
}

In Listing 9-5, the boldface code

BagOfCheese() {
}

231 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

is a very simple constructor declaration. This declaration (unlike most
constructor declarations) has no statements inside its body. This declaration
is simply a header (BagOfCheese()) and an empty body ({}).

	 You can type Listing 9-5 exactly as it is. Alternatively, you can omit the code in
boldface type, and Java creates that constructor for you automatically. (You
don’t see the constructor declaration in the Eclipse editor, but Java behaves
as if the constructor declaration exists.) To find out when Java creates a
constructor declaration automatically and when it doesn’t, see the
“Constructors with parameters” section, later in this chapter.

A constructor’s declaration looks much like a method declaration. But a
constructor’s declaration differs from a method declaration in two ways:

	 ✓	A constructor’s name is the same as the name of the class whose
objects the constructor constructs.

		 In Listing 9-5, the class name is BagOfCheese, and the constructor’s
header starts with the name BagOfCheese.

	 ✓	Before the constructor’s name, the constructor’s header has no type.

		 Unlike a method header, the constructor’s header doesn’t say int
BagOfCheese() or even void BagOfCheese(). The header simply
says BagOfCheese().

The constructor declaration in Listing 9-5 contains no statements. That isn’t
typical of a constructor, but it’s what you get in the constructor that Java
creates automatically. With or without statements, calling the constructor in
Listing 9-5 creates a brand-new BagOfCheese object.

More About Classes and Objects
(Adding Methods to the Mix)

In Chapters 5 and 7, I introduce parameter passing. In those chapters, I
unobtrusively avoid details about passing objects to methods. (At least, I
hope it’s unobtrusive.) In this chapter, I shed my coy demeanor and face the
topic (passing objects to methods) head-on.

I start with an improvement on an earlier example. The code in Listing 9-2
contains two nasty-looking showMessageDialog calls. You can streamline
the code there by moving the calls to a method. Here’s how:

	 1.	 View the code from Listing 9-2 in the Eclipse editor.

232 Part III: Working with the Big Picture: Object-Oriented Programming

		 The CreateBags.java file is in the 09-01 project that you import in
Chapter 2.

	 2.	 Use the mouse to select the entire statement containing the first call to
JOptionPane.showMessagedialog.

		 Be sure to highlight all words in the statement, starting with the word
JOptionPane and ending with the semicolon four lines later.

	 3.	 On the Eclipse main menu, choose Refactor➪Extract Method.

		 The Extract Method dialog box in Eclipse appears, as shown in Figure 9-9.

	

Figure 9-9:
The Extract

Method dia-
log box.

	

	 4.	 In the Method Name field in the Extract Method dialog box, type
displayBag.

	 5.	 (Optional) In the Name column in the Extract Method dialog box,
change bag1 to bag.

	 6.	 Make sure that a check mark appears in the box labeled Replace 1
Additional Occurrence of Statements with Method.

		 This check mark indicates that Eclipse will replace both show
MessageDialog calls with a call to the new displayBag method.

233 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	 7.	 Click OK.

		 Eclipse dismisses the Extract Method dialog box and replaces your Java
code with the new code in Listing 9-6.

Listing 9-6:   A Method Displays a Bag of Cheese
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 = new BagOfCheese();
 bag1.kind = “Cheddar”;
 bag1.weight = 2.43;
 bag1.daysAged = 30;
 bag1.isDomestic = true;

 BagOfCheese bag2 = new BagOfCheese();
 bag2.kind = “Blue”;
 bag2.weight = 5.987;
 bag2.daysAged = 90;
 bag2.isDomestic = false;

 displayBag(bag1);

 displayBag(bag2);
 }

 private static void displayBag(BagOfCheese bag) {
 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

According to the displayBag declaration (Listing 9-6), the displayBag
method takes one parameter. That parameter must be a BagOfCheese
instance. Inside the body of the method declaration, you refer to that
instance with the parameter name bag. (You refer to bag.kind, bag.
weight, bag.daysAged, and bag.isDomestic.)

In the main method, you create two BagOfCheese instances:
bag1 and bag2. You call displayBag once with the first instance
(displayBag(bag1)), and call it a second time with the second instance
(displayBag(bag2)).

234 Part III: Working with the Big Picture: Object-Oriented Programming

Constructors with parameters
Listing 9-7 contains a variation on the theme from Listing 9-2.

Listing 9-7:   Another Way to Create Two Objects
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 =
 new BagOfCheese(“Cheddar”, 2.43, 30, true);
 BagOfCheese bag2 =
 new BagOfCheese(“Blue”, 5.987, 90, false);

 displayBag(bag1);

 displayBag(bag2);
 }

 private static void displayBag(BagOfCheese bag) {
 JOptionPane.showMessageDialog(null,
 bag.kind + “, “ +
 bag.weight + “, “ +
 bag.daysAged + “, “ +
 bag.isDomestic);
 }
}

Listing 9-7 calls a BagOfCheese constructor with four parameters, so the
code has to have a four-parameter constructor. In Listing 9-8, I show you how
to declare that constructor.

Listing 9-8:   A Constructor with Parameters
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }

 BagOfCheese(String pKind, double pWeight,

235 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 int pDaysAged, boolean pIsDomestic) {
 kind = pKind;
 weight = pWeight;
 daysAged = pDaysAged;
 isDomestic = pIsDomestic;
 }
}

Listing 9-8 borrows some tricks from Chapters 5 and 7. In those chapters, I
introduce the concept of overloading — reusing a name by providing different
parameter lists. Listing 9-8 has two different BagOfCheese constructors —
one with no parameters and another with four parameters. When you call a
BagOfCheese constructor (as in Listing 9-7), Java knows which declaration
to execute by matching the parameters in the constructor call. The call in
Listing 9-7 has parameters of type String, double, int, and boolean, and
the second constructor in Listing 9-8 has the same types of parameters in the
same order, so Java calls the second constructor in Listing 9-8.

You might also notice another trick from Chapter 7. In Listing 9-8, in the
second constructor declaration, I use different names for the parameters and
the class’s fields. For example, I use the parameter name pKind and the field
name kind. So what happens if you use the same names for the parameters
and the fields, as in this example:

// DON’T DO THIS
BagOfCheese(String kind, double weight,
 int daysAged, boolean isDomestic) {
 kind = kind;
 weight = weight;
 daysAged = daysAged;
 isDomestic = isDomestic;
}

Figure 9-10 shows you exactly what happens. (Hint: Nothing good happens!)

Aside from all the yellow warning markers in the Eclipse editor, the code
with duplicate parameter and field names gives you the useless results from
Figure 9-10. The code in Listing 9-8 makes the mistake of containing two kind
variables — one inside the constructor and another outside of the constructor,
as shown in Figure 9-11.

When you have a field and a parameter with the same name, kind, the
parameter name shadows the field name inside the method or the constructor.
So, outside the constructor declaration, the word kind refers to the field
name. Inside the constructor declaration, however, the word kind refers
only to the parameter name. So, in the horrible code with duplicate names,
the statement

236 Part III: Working with the Big Picture: Object-Oriented Programming

kind = kind;

does nothing to the kind field. Instead, this statement tells the computer to
make the kind parameter refer to the same string that the kind parameter
already refers to.

If this explanation sounds like nonsense to you, it is.

	

Figure 9-10:
Some

unpleasant
results.

	

	

Figure 9-11:
Two kind

variables.
	

237 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

The kind variable in the constructor declaration’s parameter list is local to
the constructor. Any use of the word kind outside the constructor cannot
refer to the constructor’s local kind variable.

Fields are different. You can refer to a field anywhere in the class’s code. For
example, in Listing 9-8, the second constructor declaration has no local kind
variable of its own. Inside that constructor’s body, the word kind refers to
the class’s field.

One way or another, the second constructor in Listing 9-8 is cumbersome. Do
you always have to make up peculiar names like pKind for a constructor’s
parameters? No, you don’t. To find out why, see the “This is it!” section.

The default constructor
In Listing 9-1, I don’t explicitly type a parameterless constructor into my
program’s code, and Java creates a parameterless constructor for me. (I
don’t see a parameterless constructor in Listing 9-1, but I can still call new
BagOfCheese() in Listing 9-2.) But in Listing 9-8, if I didn’t explicitly type
the parameterless constructor in my code, Java wouldn’t have created a
parameterless constructor for me. A call to new BagOfCheese()would
have been illegal. (The Eclipse editor would tell me that The BagOfCheese()
constructor is undefined.)

Here’s how it works: When you define a class, Java creates a parameterless
constructor (known formally as a default constructor) if, and only if, you
haven’t explicitly defined any constructors in your class’s code. When Java
encounters Listing 9-1, Java automatically adds a parameterless constructor
to your BagOfCheese class. But when Java encounters Listing 9-8, you have
to type the lines

BagOfCheese() {
}

into your code. If you don’t, calls to new BagOfCheese() (with no
parameters) will be illegal.

This is it!
The naming problem that crops up earlier in this chapter, in the
“Constructors with parameters” section, has an elegant solution. Listing 9-9
illustrates the idea.

238 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9-9:   Using Java’s this Keyword
package com.allmycode.andy;

public class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }

 public BagOfCheese(String kind, double weight,
 int daysAged, boolean isDomestic) {
 super();
 this.kind = kind;
 this.weight = weight;
 this.daysAged = daysAged;
 this.isDomestic = isDomestic;
 }
}

To use the class in Listing 9-9, you can run the CreateBags code in Listing 9-7.
When you do, you see the run shown earlier, in Figure 9-8.

You can persuade Eclipse to create the oversized constructor that you see in
Listing 9-9. Here’s how:

	 1.	 Start with the code from Listing 9-1 (or Listing 9-3) in the Eclipse
editor.

	 2.	 Click the mouse cursor anywhere inside the editor.

	 3.	 On the Eclipse main menu, select Source➪ Generate Constructor
Using Fields.

		 The Generate Constructor Using Fields dialog box in Eclipse appears, as
shown in Figure 9-12.

	 4.	 In the Select Fields to Initialize pane in the dialog box, make sure that
all four of the BagOfCheese fields are selected.

		 Doing so ensures that the new constructor will have a parameter for
each of the class’s fields.

	 5.	 Click OK.

		 That does it! Eclipse dismisses the dialog box and adds a freshly brewed
constructor to the editor’s code.

239 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	

Figure 9-12:
The

Generate
Constructor
Using Fields

dialog box.
	

Java’s this keyword refers to “the object that contains the current line of
code.” So in Listing 9-9, the word this refers to an instance of BagOfCheese
(that is, to the object that’s being constructed). That object has a kind field,
so this.kind refers to the first of the object’s four fields (and not to the
constructor’s kind parameter). That object also has weight, daysAged,
and isDomestic fields, so this.weight, this.daysAged, and this.
isDomestic refer to that object’s fields, as shown in Figure 9-13. And the
assignment statements inside the constructor give values to the new object’s
fields.

	 Listing 9-9 contains the call super(). To find out what super() means, see
Chapter 10.

Giving an object more responsibility
You have a printer and you try to install it on your computer. It’s a capable
printer, but it didn’t come with your computer, so your computer needs a
program to drive the printer: a printer driver. Without a driver, your new
printer is nothing but a giant paperweight.

But, sometimes, finding a device driver can be a pain in the neck. Maybe you
can’t find the disk that came with the printer. (That’s always my problem.)

240 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 9-13:
Assigning
values to

an object’s
fields.

	

I have one off-brand printer whose driver is built into its permanent memory.
When I plug the printer into a USB port, the computer displays a new storage
location. (The location looks, to ordinary users, like another of the computer’s
disks.) The drivers for the printer are stored directly on the printer’s internal
memory. It’s as though the printer knows how to drive itself!

Now consider the code in Listings 9-7 and 9-8. You’re the CreateBags class
(refer to Listing 9-7), and you have a new gadget to play with — the Bag
OfCheese class in Listing 9-8. You want to display the properties of a particular
bag, and you don’t enjoy reinventing the wheel. That is, you don’t like declaring
your own displayBag method (the way you do in Listing 9-7). You’d rather
have the BagOfCheese class come with its own displayBag method.

Here’s the plan: Move the displayBag method from the CreateBags class
to the BagOfCheese class. That is, make each BagOfCheese object be
responsible for displaying itself. With the Andy’s Cheese Emporium metaphor
that starts this chapter, each bag’s form has its own Display button, as
shown in Figure 9-14.

241 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

The interesting characteristic of a Display button is that when you press it,
the message you see depends on the bag of cheese you’re examining. More
precisely, the message you see depends on the values in that particular
form’s fields.

	

Figure 9-14:
Two bag

objects and
two

displays.
	

The same thing happens in Listing 9-11 when you call bag1.displayBag().
Java runs the displayBag method shown in Listing 9-10. The values used in
that method call — kind, weight, daysAged, and isDomestic — are the
values in the bag1 object’s fields. Similarly, the values used when you call
bag2.displayBag() are the values in the bag2 object’s fields.

Listing 9-10:   A Self-Displaying Class
package com.allmycode.andy;

import javax.swing.JOptionPane;

class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 BagOfCheese() {
 }

 public BagOfCheese(String kind, double weight,

(continued)

242 Part III: Working with the Big Picture: Object-Oriented Programming

Listing 9‑10 (continued)
 int daysAged, boolean isDomestic) {

 super();
 this.kind = kind;
 this.weight = weight;
 this.daysAged = daysAged;
 this.isDomestic = isDomestic;
 }

 public void displayBag() {
 JOptionPane.showMessageDialog(null,
 kind + “, “ +
 weight + “, “ +
 daysAged + “, “ +
 isDomestic);
 }
}

Listing 9-11:   Having a Bag Display Itself
package com.allmycode.andy;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 =
 new BagOfCheese(“Cheddar”, 2.43, 30, true);
 BagOfCheese bag2 =
 new BagOfCheese(“Blue”, 5.987, 90, false);

 bag1.displayBag();

 bag2.displayBag();
 }
}

In Listing 9-10, the BagOfCheese object has its own, parameterless display
Bag method. And in Listing 9-11, the following two lines make two calls to the
displayBag method — one call for bag1 and another call for bag2:

 bag1.displayBag();

 bag2.displayBag();

A call to displayBag behaves differently depending on the particular bag
that’s being displayed. When you call bag1.displayBag(), you see the
field values for bag1, and when you call bag2.displayBag(), you see the
field values for bag2.

243 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	 To call one of an object’s methods, follow a reference to the object with a dot
and then the method’s name.

Members of a class
Notice the similarity between fields and methods:

	 ✓	As I say earlier in this chapter, in the “Creating objects” section:

To refer to one of an object’s fields, follow a reference to the object with a
dot and then the field’s name.

	 ✓	As I say earlier in this chapter, in the “Giving an object more
responsibility” section:

To call one of an object’s methods, follow a reference to the object with a
dot and then the method’s name.

The similarity between fields and methods stretches far and wide in object-
oriented programming. The similarity is so strong that special terminology
is necessary to describe it. In addition to each BagOfCheese object having
its own values for the four fields, you can think of each object as having its
own copy of the displayBag method. So the BagOfCheese class in Listing
9-10 has five members. Four of the members are the fields kind, weight,
daysAged, and isDomestic, and the remaining member is the displayBag
method.

Reference types
Here’s a near-quotation from the earlier section “Creating objects:”

In Listing 9-2, the initialization of bag1 makes the bag1 variable refer to the
newly created bag.

In the quotation, I choose my words carefully. “The initialization makes the
bag1 variable refer to the newly created bag.” Notice how I italicize the words
refer to. A variable of type int stores an int value, but the bag1 variable in
Listing 9-2 refers to an object.

What’s the difference? The difference is similar to holding an object in your
hand versus pointing to it in the room. Figure 9-15 shows you what I mean.

244 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 9-15:
Primitive

types versus
reference

types.
	

Java has two kinds of types: primitive types and reference types.

	 ✓	I cover primitive types in Chapter 6. Java’s eight primitive types are int,
double, boolean, char, byte, short, long, and float.

	 ✓	A reference type is the name of a class or (as you see in Chapter 10) an
interface.

In Figure 9-15, the variable daysAged contains the value 30 (indicating that
the cheese in a particular bag has been aged for 30 days). I imagine the value
30 being right inside the daysAged box because the daysAged variable has
type int — a primitive type.

But the variable bag1 has type BagOfCheese, and BagOfCheese isn’t a
primitive type. (I know of no computer programming language in which a bag
of cheese is a built-in, primitive type!) So the bag1 variable doesn’t contain
“Cheddar” 2.43 30 true. Instead, the variable bag1 contains the
information required to locate the “Cheddar” 2.43 30 true object. The
variable bag1 stores information that refers to the “Cheddar” 2.43 30
true object.

	 The types int, double, boolean, char, byte, short, long, and float
are primitive types. A primitive type variable (int daysAged, double
weight, boolean, and isDomestic, for example) stores a value. In contrast,
a class is a reference type, such as String, which is defined in Java’s API, and
BagOfCheese, which you or I declare ourselves. A reference type variable
(BagOfCheese bag and String kind, for example) refers to an object.

	 Figure 9-15 would be slightly more accurate (but a bit more complicated) if the
bottommost box contained a picture of a hand followed by the values 2.43 30
true. The hand would point outside of the box to the string “Cheddar”.

245 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	 In this section, I say that the bag1 variable refers to the “Cheddar” 2.43 30
true object. It’s also common to say that the bag1 variable points to the
“Cheddar” 2.43 30 true object. Alternatively, you can say that the bag1
variable stores the number of the memory address where the “Cheddar”
2.43 30 true object’s values begin. Neither the pointing language nor
the memory language expresses the truth of the matter, but if the rough
terminology helps you understand what’s going on, there’s no harm in
using it.

Pass by reference
In the previous section, I emphasize that classes are reference types. A
variable whose type is a class contains something that refers to blah, blah,
blah. You might ask, “Why should I care?”

Look at Listing 7-4, over in Chapter 7, and notice the result of passing a
primitive type to a method:

When the method’s body changes the parameter’s value, the change has no
effect on the value of the variable in the method call.

This principle holds true for reference types as well. But in the case of a
reference type, the value that’s passed is the information about where to find
an object, not the object itself. When you pass a reference type in a method’s
parameter list, you can change values in the object’s fields.

See, for example, the code in Listing 9-12.

Listing 9-12:   Another Day Goes By
package com.allmycode.andy;

public class CreateBags {
 public static void main(String[] args) {
 BagOfCheese bag1 =
 new BagOfCheese(“Cheddar”, 2.43, 30, true);

 addOneDay(bag1);

 bag1.displayBag();
 }

 static void addOneDay(BagOfCheese bag) {
 bag.daysAged++;
 }
}

246 Part III: Working with the Big Picture: Object-Oriented Programming

A run of the code in Listing 9-12 is shown in Figure 9-16. In that run, the
constructor creates a bag that is aged 30 days, but the addOneDay method
successfully adds a day. In the end, the display in Figure 9-16 shows 31 days
aged.

	

Figure 9-16:
Thirty-one

days old.
	

Unlike the story with int values, you can change a bag of cheese’s daysAged
value by passing the bag as a method parameter. Why does it work this way?

When you call a method, you make a copy of each parameter’s value in
the call. You initialize the declaration’s parameters with the copied values.
Immediately after making the addOneDay call in Listing 9-12, you have two
variables: the original bag1 variable in the main method and the new bag
variable in the addOneDay method. The new bag variable has a copy of the
value from the main method, as shown in Figure 9-17. That “value” from the
main method is a reference to a BagOfCheese object. In other words, the
bag1 and bag variables refer to the same object.

The statement in the body of the addOneDay method adds 1 to the value
stored in the object’s daysAged field. After one day is added, the program’s
variables look like the information in Figure 9-18.

Notice how both the bag1 and bag variables refer to an object whose
daysAged value is 31. After returning from the call to addOneDay, the bag
variable goes away. All that remains is the original main method and its bag1
variable, as shown in Figure 9-19. But bag1 still refers to an object whose
daysAged value has been changed to 31.

In Chapter 7, I show you how to pass primitive values to method parameters.
Passing a primitive value to a method parameter is called pass-by value. In
this section, I show you how to pass both primitive values and objects to
method parameters. Passing an object (such as bag1) to a method parameter
is called pass-by reference.

247 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	

Figure 9-17:
Java copies

a pointer.
	

	

Figure 9-18:
Java adds 1

to days
Aged.

	

248 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 9-19:
The original
bag is aged

31 days.
	

Java’s Modifiers
Throughout this book, you see words like static and public peppered
throughout the code listings. You might wonder what these words mean.
(Actually, if you’re reading from front to back, you might have grown
accustomed to seeing them and started thinking of them as background
noise.) In the next few sections, I tackle some of these modifier keywords.

Public classes and default-access classes
Most of the classes in this chapter’s listings begin with the word public.
When a class is public, any program in any package can use the code (or at
least some of the code) inside that class. If a class isn’t public, then for a
program to use the code inside that class, the program must be inside the
same package as the class. Listings 9-13, 9-14, and 9-15 illustrate these ideas.

Listing 9-13:   What Is a Paragraph?
package org.allyourcode.wordprocessor;

class Paragraph {
 int alignment;
 int borders;
 double leftIndent;
 double lineSpacing;
 int style;
}

249 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

Listing 9-14:   Making a Paragraph with Code in the Same Package
package org.allyourcode.wordprocessor;

class MakeParagraph {

 public static void main(String[] args) {
 Paragraph paragraph = new Paragraph();
 paragraph.leftIndent = 1.5;
 }

}

Listing 9-15:   Making a Paragraph with Code in Another Package
package com.allyourcode.editor;

import org.allyourcode.wordprocessor.Paragraph;

public class MakeAnotherParagraph {

 public static void main(String[] args) {
 Paragraph paragraph = new Paragraph();
 paragraph.leftIndent = 1.5;
 }

}

The Paragraph class in Listing 9-13 has default access — that is, the
Paragraph class isn’t public. The code in Listing 9-14 is in the same package
as the Paragraph class (the org.allyourcode.wordprocessor package).
So In Listing 9-14, you can declare an object to be of type Paragraph, and
you can refer to that object’s leftIndent field.

The code in Listing 9-15 isn’t in the same org.allyourcode.wordprocessor
package. For that reason, the use of names like Paragraph and leftIndent
(from Listing 9-13) aren’t legal in Listing 9-15, even if Listings 9-13 and 9-15 are
in the same Eclipse project. When you type Listings 9-13, 9-14, and 9-15 into
the Eclipse editor, you see a red, blotchy mess for Listing 9-15, as shown in
Figure 9-20.

	

Figure 9-20:
Errors in

Listing 9-15.
	

250 Part III: Working with the Big Picture: Object-Oriented Programming

	 An Android activity can invoke the code from another package (that is,
another Android app). To do this, you don’t use names from the other
package in your activity’s code. For details, see the discussion of start
Activity in Chapter 12.

The .java file containing a public class must have the same name as the
public class, so the file containing the code in Listing 9-1 must be named
BagOfCheese.java.

Even the capitalization of the filename must be the same as the public class’s
name. You see an error message if you put the code in Listing 9-1 inside a file
named bagofcheese.java. In the file’s name, you have to capitalize the
letters B, O, and C.

Because of the file-naming rule, you can’t declare more than one public class
in a .java file. If you put the public classes from Listings 9-1 and 9-2 into the
same file, would you name the file BagOfCheese.java or CreateBags.
java? Neither name would satisfy the file-naming rule. For that matter, no
name would satisfy it.

	 It’s customary to declare a class containing a main method to be public. I
sometimes ignore this convention, but when I do, the code looks strange
to me later. Once, I faced a situation in which a Java class had to be public
simply because that class contained a main method. I promised myself that
I’d use this example in my writing later, but since then I haven’t been able to
remember the situation. Oh, well!

Access for fields and methods
A class can have either public access or nonpublic (default) access. But a
member of a class has four possibilities: public, private, default, and
protected.

	 A class’s fields and methods are the class’s members. For example, the class
in Listing 9-10 has five members: the fields kind, weight, daysAged, and
isDomestic and the method displayBag.

Here’s how member access works:

	 ✓	A default member of a class (a member whose declaration doesn’t
contain the words public, private, or protected) can be used by
any code inside the same package as that class.

	 ✓	A private member of a class cannot be used in any code outside the
class.

251 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

	 ✓	A public member of a class can be used wherever the class itself can be
used; that is:

	 •	Any program in any package can refer to a public member of a
public class.

	 •	For a program to reference a public member of a default access
class, the program must be inside the same package as the class.

To see these rules in action, check out the public class in Listing 9-16.

Listing 9-16:   A Class with Public Access
package org.allyourcode.bank;

public class Account {
 public String customerName;
 private int internalIdNumber;
 String address;
 String phone;
 public int socialSecurityNumber;
 int accountType;
 double balance;

 public static int findById(int internalIdNumber) {
 Account foundAccount = new Account();
 // Code to find the account goes here.
 return foundAccount.internalIdNumber;
 }
}

The code in Figures 9-21 and 9-22 uses the Account class and its fields.

	

Figure 9-21:
Referring

to a public
class in the

same
package.

	

252 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 9-22:
Referring

to a public
class in a
different

package.
	

In Figures 9-21 and 9-22, notice that

	 ✓	The UseAccount class is in the same package as the Account class.

	 ✓	The UseAccount class can create a variable of type Account.

	 ✓	The UseAccount class’s code can refer to the public customerName
field of the Account class and to the default address field of the
Account class.

	 ✓	The UseAccount class cannot refer to the private internalIdNumber
field of the Account class, even though UseAccount and Account are
in the same package.

	 ✓	The UseAccountFromOutside class is not in the same package as the
Account class.

	 ✓	The UseAccountFromOutside class can create a variable of type
Account. (An import declaration keeps me from having to repeat the
fully qualified org.allyourcode.bank.Account name everywhere in
the code.)

	 ✓	The UseAccountFromOutside class’s code can refer to the public
customerName field of the Account class.

	 ✓	The UseAccountFromOutside class’s code cannot refer to the default
address field of the Account class or to the private internalIdNum-
ber field of the Account class.

Now examine the nonpublic class in Listing 9-17.

Listing 9-17:   A Class with Default Access
package org.allyourcode.game;

class Sprite {
 public String name;

253 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 String image;
 double distanceFromLeftEdge, distanceFromTop;
 double motionAcross, motionDown;
 private int renderingMethod;

 void render() {
 if (renderingMethod == 2) {
 // Do stuff here
 }
 }
}

The code in Figures 9-23 and 9-24 uses the Sprite class and its fields.

	

Figure 9-23:
Referring

to a default
access
class in

the same
package.

	

	

Figure 9-24:
Referring

to a default
access

class in a
different

package.
	

In Figures 9-23 and 9-24, notice that

	 ✓	The UseSprite class is in the same package as the Sprite class.

	 ✓	The UseSprite class can create a variable of type Sprite.

	 ✓	The UseSprite class’s code can refer to the public name field of the
Sprite class and to the default distanceFromTop field of the Sprite
class.

254 Part III: Working with the Big Picture: Object-Oriented Programming

	 ✓	The UseSprite class cannot refer to the private renderingValue field
of the Sprite class, even though UseSprite and Sprite are in the
same package.

	 ✓	The UseSpriteFromOutside class isn’t in the same package as the
Sprite class.

	 ✓	The UseSpriteFromOutside class cannot create a variable of type
Sprite. (Not even an import declaration can save you from an error
message here.)

	 ✓	Inside the UseAccountFromOutside class, references to sprite.
name, sprite.distanceFromTop, and sprite.renderingValue are
all meaningless because the sprite variable doesn’t have a type.

Using getters and setters
In Figures 9-21 and 9-22, the UseAccount and UseAccountFromOutside
classes can set an account’s customerName and get the account’s existing
customerName:

account.customerName = “Occam”;
String nameBackup = account.customerName;

But neither the UseAccount class nor the UseAccountFromOutside class
can tinker with an account’s internalIdNumber field.

What if you want a class like UseAccount to be able to get an existing
account’s internalIdNumber but not to change an account’s inter-
nalIdNumber? (In many situations, getting information is necessary, but
changing existing information is dangerous.) You can do all this with a getter
method, as shown in Listing 9-18.

Listing 9-18:   Creating a Read-Only Field
package org.allyourcode.bank;

public class Account {
 public String customerName;
 private int internalIdNumber;
 String address;
 String phone;
 public int socialSecurityNumber;
 int accountType;
 double balance;

 public static int findById(int internalIdNumber) {

255 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 Account foundAccount = new Account();
 // Code to find the account goes here.
 return foundAccount.internalIdNumber;
 }

 public int getInternalIdNumber() {
 return internalIdNumber;
 }
}

With the Account class in Listing 9-18, another class’s code can call

System.out.println(account.getInternalIdNumber());

or

int backupIdNumber = account.getInternalIdNumber();

The Account class’s internalIdNumber field is still private, so another
class’s code has no way to assign a value to an account’s internalId
Number field. To enable other classes to change an account’s private
internalIdNumber value, you can add a setter method to the code in
Listing 9-18, like this:

public void setInternalIdNumber(int internalIdNumber) {
 this.internalIdNumber = internalIdNumber;
}

Getter and setter methods aren’t built-in features in Java — they’re simply
ordinary Java methods. But this pattern (having a method whose purpose
is to access an otherwise inaccessible field’s value) is used so often that
programmers use the terms getter and setter to describe it.

	 Getter and setter methods are accessor methods. Java programmers almost
always follow the convention of starting an accessor method name with get
or set and then capitalizing the name of the field being accessed. For example,
the field internalIdNumber has accessors named getInternal
IdNumber and setInternalIdNumber. The field renderingValue has
accessors named getRenderingValue and setRenderingValue.

You can have Eclipse create getters and setters for you. Here’s how:

	 1.	 Start with the code from Listing 9-16 in the Eclipse editor.

	 2.	 Click the mouse cursor anywhere inside the editor.

	 3.	 On the Eclipse main menu, select Source➪Generate Getters and Setters.

256 Part III: Working with the Big Picture: Object-Oriented Programming

		 The Generate Getters and Setters dialog box in Eclipse appears, as
shown in Figure 9-25.

	

Figure 9-25:
The

Generate
Getters and

Setters
dialog box.

	

	 4.	 In the Select Getters and Setters to Create pane in the dialog box,
expand the internalIdNumber branch.

	 5.	 Within the internalIdNumber branch, select either or both of the
getInternalIdNumber() or setInternalIdNumber(int) check boxes.

		 Eclipse creates only the getters and setters whose check boxes you
select.

	 6.	 Click OK.

		 Eclipse dismisses the dialog box and adds freshly brewed getter and
setter methods to the editor’s code.

	 I cover protected access in Chapter 10.

257 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

What does static mean?
This chapter begins with a discussion of cheese and its effects on Andy’s
business practices. Andy has a blank form that represents a class. He also
has a bunch of filled-in forms, each of which represents an individual bag-of-
cheese object.

One day, Andy decides to take inventory of his cheese by counting all the
bags of cheese (see Figure 9-26).

	

Figure 9-26:
Counting

bags of
cheese.

	

Compare the various fields shown in Figure 9-27. From the object-oriented
point of view, how is the daysAged field so different from the count field?

The answer is that a single bag can keep track of how many days it has
been aged, but it shouldn’t count all the bags. As far back as Listing 9-1, a
BagOfCheese object has its own daysAged field. That makes sense. (Well, it
makes sense to an object-oriented programmer.)

But giving a particular object the responsibility of counting all objects in its
class doesn’t seem fair. To have each BagOfCheese object speak on behalf
of all the others violates a prime directive of computer programming: The
structure of the program should imitate the structure of the real-life data. For
example, I can post a picture of myself on Facebook, but I can’t promise to
count everyone else’s pictures on Facebook. (“All you other Facebook users,
count your own @#!% pictures!”)

A field to count all bags of cheese belongs in one central place. That’s why,
in Figure 9-27, I have one, and only one, count field. Each object has its own
daysAged value, but only the class itself has a count value.

A field or method that belongs to an entire class rather than to each individual
object is a static member of the class. To declare a static member of a class,
you use Java’s static keyword (what a surprise!), as shown in Listing 9-19.

258 Part III: Working with the Big Picture: Object-Oriented Programming

	

Figure 9-27:
The UML
diagram
has only

one count
variable.

	

kind : String
weight : double
daysAged : int
isDomestic : Boolean
displayBag() : void
count : int

BagOfCheese

kind = “Cheddar”
weight = 2.43
daysAged = 30
isDomestic = true
displayBag() : void

:BagOfCheese

kind = “Blue”
weight = 5.987
daysAged = 90
isDomestic = false
displayBag() : void

:BagOfCheese

Listing 9-19:   Creating a Static Field
package com.allmycode.andy;

class BagOfCheese {
 String kind;
 double weight;
 int daysAged;
 boolean isDomestic;

 static int count = 0;

 public BagOfCheese() {
 count++;
 }
}

To refer to a class’s static member, you preface the member’s name with the
name of the class, as shown in Listing 9-20.

Listing 9-20:   Referring to a Static Field
package com.allmycode.andy;

import javax.swing.JOptionPane;

public class CreateBags {

 public static void main(String[] args) {

259 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

 new BagOfCheese();
 new BagOfCheese();
 new BagOfCheese();
 JOptionPane.showMessageDialog
 (null, BagOfCheese.count);
 }

}

Knowing when to create a static member
In many situations, you declare an element to be static in order to mirror
the structure of real-life data — but sometimes you declare it to be static for
technical reasons. For example, a program’s main method has to be static in
order to provide the Java virtual machine with easy access to the method.

Listing 9-21 is a copy of an example from Chapter 7. In the listing, the main
method has to be static. I’ve learned to live with that fact.

Listing 9-21:   Declaring and Calling a Static Method
import javax.swing.JOptionPane;

public class Scorekeeper {

 public static void main(String[] args) {
 int score = 50000;
 int points = 1000;
 score = addPoints(score, points);
 JOptionPane.showMessageDialog(null, score,
 “New Score”, JOptionPane.INFORMATION_MESSAGE);
 }

 static int addPoints(int score, int points) {
 return score + points;
 }

}

But what about the addPoints method in Listing 9-21? Why is the addPoints
method static? If you remove the word static from the addPoints method’s
declaration, you get this ferocious-looking error: Cannot make a static
reference to non-static method. What gives?

To understand what’s going on, consider the three ways to refer to a member
(a field or a method):

260 Part III: Working with the Big Picture: Object-Oriented Programming

	 ✓	You can preface the member name with a name that refers to an
object.

		 For example, in Listing 9-11, I preface calls to displayBag with the
names bag1 and bag2, each of which refers to an object:
bag1.displayBag();
bag2.displayBag();

		 When you do this, you’re referring to something that belongs to each
individual object. (You’re referring to the object’s nonstatic field, or
calling the object’s nonstatic method.)

	 ✓	You can preface the member name with a name that refers to a class.

		 For example, in Listing 9-20, I prefaced the field name count with the
class name BagOfCheese.

		 When you do this, you’re referring to something that belongs to the
entire class. (You’re referring to the class’s static field, or calling the
class’s static method.)

	 ✓	You can preface the member name with nothing.

		 For example, in Listing 9-10, inside the displayBag method, I use the
names kind, weight, daysAged, and isDomestic with no dots in front
of them:
public void displayBag() {
 JOptionPane.showMessageDialog(null,
 kind + “, “ +
 weight + “, “ +
 daysAged + “, “ +
 isDomestic);
}

		 In Listing 9-21, I preface the static method name addPoints with no
dots in front of the name:
score = addPoints(score, points);

		 When you do this, you’re referring to either a nonstatic member belong-
ing to a particular object or to a static member belonging to a particular
class. It all depends on the location of the code containing the member
name, as described in this list:

	 •	If the code is inside a nonstatic method, the name refers to an ele-
ment belonging to an object. That is, the name refers to an object’s
nonstatic field or method.

		 For example, in Listing 9-10, the following code snippet is in the
non-static displayBag method:

kind + “, “ +
weight + “, “ +
daysAged + “, “ +
isDomestic);

261 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

		 In this context, the names kind, weight, daysAged, and is
Domestic refer to a particular object’s properties.

	 •	If the code is inside a static method, the name refers to something
belonging to an entire class. That is, the name refers to a class’s
static field or method.

		 In Listing 9-21, the line
score = addPoints(score, points);

		 is inside the static main method, so the name addPoints refers to
the Scorekeeper class’s static addPoints method.

	 Java provides a loophole in which you break one of the three rules I just
described. You can preface a member name with a name that refers to an
object. If the member is static, it’s the same as prefacing the member name
with the name of a class (whatever class you used when you declared that
name).

Consider the code in Listing 9-21. If the addPoints method isn’t static, each
instance of the Scorekeeper class has its own addPoints method, and
each addPoints method belongs to an instance of the Scorekeeper class.
The trouble is that the code in Listing 9-21 doesn’t construct any instances of
the Scorekeeper class. (The listing declares the Scorekeeper class itself,
but doesn’t create any instances.) The listing has no copies of addPoints to
call. (See Figure 9-28.)Without addPoints being static, the statement score
= addPoints(score, points) is illegal.

Sure, you can call the Scorekeeper constructor to create a Scorekeeper
instance:

Scorekeeper keeper = new Scorekeeper();

But that doesn’t solve the problem. The call to addPoints is inside the
main method, and the main method is static. So the addPoints call doesn’t
come from the new keeper object, and the call doesn’t refer to the keeper
object’s addPoints method.

You can fix the problem (of addPoints not being static) by using a two-
step approach: Create a Scorekeeper instance, and call the new instance’s
addPoints method, as shown here and in Figure 9-29:

Scorekeeper keeper = new Scorekeeper();
keeper.addPoints(score, points);

But this approach complicates the example from Chapter 7.

In Listing 9-21, the one and only static addPoints method belongs to the
entire Scorekeeper class, as shown in Figure 9-30. Also, the static main

262 Part III: Working with the Big Picture: Object-Oriented Programming

method and the call to addPoints belong to the entire Scorekeeper class,
so the addPoints call in Listing 9-21 has a natural target, as shown in
Figure 9-29.

	

Figure 9-28:
Failing when
trying to call

a nonstatic
add

Points
method.

	

	

Figure 9-29:
Succeeding

in calling a
nonstatic

add
Points

method.
	

	

Figure 9-30:
Calling
a static

method.
	

263 Chapter 9: Why Object-Oriented Programming Is Like Selling Cheese

What’s Next?
This chapter talks about individual classes. Most classes don’t exist in
isolation from other classes. Most classes belong to hierarchies of classes,
subclasses, and sub-subclasses, so the next chapter covers the relationships
among classes.

264 Part III: Working with the Big Picture: Object-Oriented Programming

