
Part 2

Browser-based apps

For a very long time developers were processing everything—form validation,

file management, storage, messaging, and other vital application functionality—

on the server. Server-side processing was a great idea for security reasons, lack of

user processing power, and many other issues. There were workarounds through

technologies such as Flash and Java, but the mobile market explosion revealed

unanticipated limitations that HTML5 is aiming to fix.

 Thanks to major advances in JavaScript processing power and new W3C stan-

dards, you can now perform server-side tasks through a user’s browser (aka client-

side). Performing complex tasks through browsers saves tons of money on server

costs, allows startups to easily create complex apps, and creates seemingly instant

application responses during heavy load times. It also opens up a completely

different thought process on application development and deployment to

mobile and desktop. And they can both be done at the same time if you play

your cards right.

 Many popular web applications use HTML5’s application features. Google

Drive, for example, uses a new storage technology known as the Indexed Data-

base API. You’ve probably also used HTML5’s WebSockets, forms, and many

other features that we’ll be covering throughout this section. By the time you’ve

completed part 2 (chapters 2–5), you’ll know enough to put together a small

application with minimal server usage.

Chapter 2 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

New input types1 HTML5 <input> element types

■ email
■ tel
■ number
■ month

42

42

46

49

New input attributes1 HTML5 attributes on <input> elements

■ required
■ pattern
■ autofocus
■ placeholder
■ min and max

42

49

43

42

46

data-* attributes Storing key/value data in attributes on elements 46

valueAsNumber property Reading input values in numeric format 54

<output> element Displaying the output of calculations 47

Preventing validation Providing means of bypassing client-side validation

■ formnovalidate attribute

■ formaction attribute

51

51

Constraint Validation API Client-side API for validation

■ setCustomValidity method

■ validationMessage property

■ invalid event

59

59

60

CSS3 pseudo-classes Styling invalid elements with CSS3 61

Backward compatibility Feature detection and unsupported browsers

■ Modernizr.js

■ Polyfills

■ Validation

63

64

65

1 Only the input types and attributes used or discussed in this chapter are listed here. For comprehensive cov-

erage, visit mng.bz/wj56.

Core API

37

Form creation: input
widgets, data binding,

and data validation

As the web has matured, the need for a much richer set of form field types and widgets

has emerged. Today’s users expect a consistent standard between web applications, par-

ticularly when it comes to data validation. HTML5 meets this requirement with 13 new

form input types, ranging from number spinners and sliders to date- and color-pickers.

 The standard also defines new attributes you can apply to <input> elements to

enhance the functionality of your forms, including presentational attributes like

placeholder and autofocus, as well as validation attributes such as required and

pattern. You can even use a set of new CSS3 pseudo-classes to style valid or invalid

form elements with zero JavaScript. And if you have advanced validation requirements

you can’t provide natively, the new Constraint Validation API offers a standardized

This chapter covers

■ New HTML5 input types and attributes

■ data-* attributes, valueAsNumber property,

and the <output> element

■ Constraint Validation API

■ Ways to bypass validation

■ CSS3 pseudo-classes

■ HTML5 feature detection with Modernizr and

backward compatibility with polyfill

38 CHAPTER 2 Form creation: input widgets, data binding, and data validation

JavaScript API that can test for the validity of form fields, along with a new event you

can use to detect an invalid data entry.

 In this chapter, you’ll implement all of these new features by building an order

form for computer products. The form will use HTML5 validation to “sanitize” the

input on the client side before it’s submitted.

We’ll get started by showing you a preview of the form and helping you get your pre-

requisites in order.

2.1 Previewing the form and gathering prerequisites

The order form you’ll build in this chapter, shown in figure 2.1, allows users to enter

personal data, login details, and order and payment information.

 The form makes use of several new HTML5 features:

■ Form <input> element types (email, tel, number, and month) and attributes (required,

pattern, autofocus, placeholder, and max and min) to provide users with bet-

ter widgets and data validation when appropriate.

■ The data-* attributes to hold the price of each product, the valueAsNumber prop-

erty to read input values in numeric format, and the <output> element to present

subtotals and grand totals.

■ The formnovalidate and formaction attributes to bypass data validation and

save an incomplete form.

■ The Constraint Validation API to perform custom validation and detect when the

user attempts to submit the form with elements that are invalid, and CSS3 pseudo-

class selectors to style invalid elements.

■ The Modernizr.js JavaScript library and polyfills to serve users whose browsers don’t

support various HTML5 features. (Although we admit that Modernizr and poly-

fills aren’t strictly HTML5 features, we recommend that you use them if you’re

serious about developing HTML5 applications.)

When you’ve finished, the order form will be functional in the latest versions of all the

major browsers, although you may find varying levels of support for some features

such as widgets for new input types and inline error messages for the Constraint Vali-

dation API. But browser hiccups will become less and less an issue as support for the

new features increases.

Why build this chapter’s order form?

While working through this chapter’s sample application, you’ll learn to use:

■ New input types to provide more widgets with less coding

■ New input attributes to provide validation with less coding

■ data-* attributes to bind data to HTML elements

■ Constraint Validation API features to create custom validation tests

39Previewing the form and gathering prerequisites

NOTE This chapter covers only the client-side portion of the order form.
When the form is submitted, it makes a request to a URL. To perform further
processing, you’ll need to implement the form on the server side using your
choice of server-side language or framework (such as PHP or Ruby on Rails).
The server-side aspect is outside the scope of this book.

2.1.1 Gathering the application prerequisites

You’ll work with five files in this chapter:

■ An HTML document

■ A JavaScript source file

■ A CSS stylesheet

■ The Modernizr library

■ The month-picker polyfill script

The stylesheet and polyfill are part of the chapter’s source code archive, but you’ll

need to download the Modernizr library from its website at http://modernizr.com/.

Rename the .js file to modernizr.js and place it, along with both the CSS file and

monthpicker.js, in the application’s directory.

The form itself comprises four main sections,

each of which is grouped in a <fieldset> block:

Contact details

Requests the user’s name, email

address, postal address, home and

cell phone numbers, Skype name,

and Twitter account.

Login details

Asks the user to enter their password

twice (to ensure they enter it correctly).

Order details

Contains a table with three products; a

product code, description, and price are

provided for each. The user can enter a

quantity value for each product, and the

item and overall order total will be

calculated dynamically.

Payment details

Requires a user to enter credit card

details: the name on the card, the card

number, the expiry date (month/year),

and the CVV2 security code on the

back of the card.

Figure 2.1 The order form running in Google Chrome. The user is given two options when

submitting the form: Submit Order or Save Order. The Submit Order button performs validation and

processes a user’s order, whereas the Save Order button bypasses the validation and saves the

details, so users can come back later and finish filling out their order.

http://modernizr.com/

40 CHAPTER 2 Form creation: input widgets, data binding, and data validation

TIP Modernizr offers two choices when you download the library—develop-
ment or production builds. The development build contains the entire Mod-
ernizr test suite and isn’t compressed or minified. If you’re in a hurry and
don’t mind the large file size, use the development build. On the other hand,
the production build allows you to configure which tests you want to include
and will be compressed and minified to ensure a minimal file size. If you
choose to use the production build, be sure to include the Input Attributes,
Input Types, and Modernizr.load tests, because these are required in this
chapter. You’ll learn more about Modernizr later in the chapter.

With the preview and prerequisites out of the way, it’s time to start working on the

form’s UI.

2.2 Building a form’s user interface

The work in this section—building the UI—involves defining the HTML document

structure, building the individual form sections, and allowing users to determine

whether to save or submit form details.

We’ll walk you through the UI work in seven steps:

■ Step 1: Create index.html and load external files.

■ Step 2: Create the Contact Details form section.

■ Step 3: Build the Login Details form section.

■ Step 4: Build the Order Details form section.

■ Step 5: Build the Payment Details form section.

■ Step 6: Bypass form validation and save form data.

■ Step 7: Change the form action in older browsers.

First up, the HTML document.

2.2.1 Defining a form’s basic HTML document structure

Before you begin, we recommend that you create a new directory on your system.

Ideally, it would be a location on a web server, but that’s not a requirement for

the example.

In this section, you’ll learn

■ How to provide users with widgets and data validation using HTML5 form <input>
element types and attributes

■ How to store the price of each product with data-* attributes

■ How to present subtotals and grand totals using the <output> element

■ How to bypass form validation and save an incomplete form using the form attri-

bute properties, formnovalidate and formaction

41Building a form’s user interface

STEP 1: CREATE INDEX.HTML AND LOAD EXTERNAL FILES

Create a new file named index.html and place it in the new directory. Then, add the

contents of the following listing to that file. The code loads external dependencies

(CSS and JavaScript files) and defines the <form> element with the heading at the top

and the buttons at the bottom.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Order Form</title>
 <link rel="stylesheet" href="style.css">
 <script src="modernizr.js"></script>
 <script src="app.js"></script>
</head>
<body>
 <form name="order" method="post" action="/submit">
 <h1>Order Form</h1>

 <div class="buttons">
 <input type="submit" value="Submit Order">
 <input type="submit" id="saveOrder" value="Save Order">
 </div>
 </form>
</body>
</html>

The order form is split into four sections, which we’ll work on sequentially: Contact

Details, Login Details, and Payment Details in this section, and Order Details in the

section that follows.

2.2.2 Using the form input types email and tel and the input attributes

autofocus, required, and placeholder

Before you actually start building the order form, we’d like to give you more details

about the new input types and attributes and show you how to use these types and

attributes to build your forms in less time. As we proceed, we’ll improve the example

form with the email and tel (for telephone) input types and also make use of the

autofocus, required, and placeholder attributes.

Listing 2.1 index.html—HTML document structure

email input type 10.0 4.0 10.0 10.6 5.0*

tel input type 10.0 4.0 10.0 10.6 5.0

* Indicates partial support

Load the Modernizr library. You may
wonder why we don’t include the
monthpicker.js file—later we’ll use the
Modernizr.load method to dynamically
load that file, but only if it’s needed by
the user’s web browser.

42 CHAPTER 2 Form creation: input widgets, data binding, and data validation

Both the email and tel input types look identical to the standard text input element.

But if the user is browsing on a mobile device that supports these input types, it can

display different virtual keyboard layouts depending on what type of data the user is

entering. See figure 2.2 for an example of this in action.

 In the case of the email input type, the browser will also check that the user inputs

a valid email address. If not, it will raise an error when the user submits the form. The

error style is defined by the browser, which means it will look somewhat different

depending on the user’s browser. Figure 2.3 illustrates this.

 Now, let’s look at three additional attributes: autofocus, required, and place-

holder.

Core API

input[type=text]

Regular keyboard

input[type=email]

Smaller spacebar,

@ and . added

input[type=url]

Spacebar removed,

., /, and .com added

input[type=tel]

Numeric keyboard

Figure 2.2 Different virtual keyboards are displayed on an iPhone for different input types—

from left to right: text, email, url, and tel. Notice how symbols are added and removed for

the email and url input types. An entirely different keyboard is displayed for the number
input type.

Figure 2.3 Each web browser vendor implements a different style when presenting input validation

errors to the user. As more websites begin to use HTML5 form validation, users will become more

familiar with the standard style of error message displayed by their browser of choice.

Core API

43Building a form’s user interface

THE AUTOFOCUS, REQUIRED, AND PLACEHOLDER ATTRIBUTES

The autofocus attribute is self-explanatory; it allows you to define which input ele-

ment should receive focus when the page loads. The required attribute is also

straightforward—it allows you to define that a field must contain input from the user

in order to be valid. You’ll learn much more about HTML5 form validation later in the

chapter. The placeholder attribute allows you to define a piece of text that will

appear in a field when it’s empty and inactive. As soon as the user types in the field,

the placeholder text will be cleared and replaced with the user’s input. This is illus-

trated in figure 2.4.

STEP 2: CREATE THE CONTACT DETAILS FORM SECTION

Let’s integrate those new features into the Contact Details section of the form, the markup

for which is shown in the next listing. You should add this code to the index.html file,

immediately after the line <h1>Order Form</h1> from the previous listing.

<fieldset>
 <legend>Contact Details</legend>

 <label class="required">
 <div>Full Name</div>
 <input name="name" required autofocus>
 </label>

 <label class="required">
 <div>Email Address</div>
 <input type="email" name="email" required>
 </label>

autofocus attribute 6.0 4.0 10.0 11.0 5.0

required attribute 10.0 4.0 10.0 10.0 5.0*

placeholder attribute 4.0 4.0 10.0 11.6 5.0

* Indicates partial support

Listing 2.2 index.html—The Contact Details form section

Figure 2.4 Demonstration of the placeholder attribute. This example displays a search input

field, with the placeholder text “What are you looking for?” When the user enters a value, the

placeholder text is replaced with that value.

The name field is the
first in the form, so
it makes sense to
autofocus it. It’s also
a required field.

The email field
uses the new
email input
type. It’s also a
required field.

44 CHAPTER 2 Form creation: input widgets, data binding, and data validation

 <label>
 <div>Postal Address</div>
 <input name="address1" placeholder="Address Line 1">
 </label>
 <div> </div>
 <input name="address2" placeholder="Address Line 2">
 <div> </div>
 <input name="city" class="city" placeholder="Town/City">
 <input name="state" class="state" placeholder="State">
 <input name="zip" class="zip" placeholder="Zip Code">
 <div> </div>
 <select name="country">
 <option value="0">Country</option>
 <option value="US">United States</option>
 <option value="CA">Canada</option>
 </select>

 <label>
 <div>Home Phone No.</div>
 <input type="tel" name="homephone">
 </label>

 <label>
 <div>Cell Phone No.</div>
 <input type="tel" name="cellphone">
 </label>

 <label>
 <div>Skype Name</div>
 <input name="skype">
 </label>

 <label>
 <div>Twitter</div>
 @
 <input name="twitter" class="twitter">
 </label>

</fieldset>

2.2.3 Using the form input attribute required

The Login Details form section is the most unremarkable part of the form. It asks the

user to enter an account password and to enter it a second time to confirm. The

markup doesn’t introduce any new HTML5 features, but later in this chapter you’ll

learn how to use the Constraints Validation API to provide password confirmation.

STEP 3: BUILD THE LOGIN DETAILS FORM SECTION

At this point, you need only to add the code from the following listing to index.html,

after the end of the previous listing; then we’ll move on to a more interesting section.

Each of the lines in the
address field uses the

placeholder attribute to
indicate what type of

information is relevant
for each of the fields.

The homephone and
cellphone fields both use
the tel input type.
Although this will make
no apparent difference on
a regular browser, visitors
using mobile browsers
will benefit from a virtual
keyboard that’s designed
specifically for entering
telephone numbers.

http://mng.bz/cJhc
http://manning.com/crowther2
http://afarkas.github.com/webshim/demos/
https://github.com/ryanseddon/H5F
https://github.com/westonruter/webforms2
https://github.com/westonruter/webforms2
https://github.com/westonruter/webforms2

45Building a form’s user interface

<fieldset>
 <legend>Login Details</legend>

 <label class="required">
 <div>Password</div>
 <input type="password" name="password" required>
 </label>

 <label class="required">
 <div>Confirm Password</div>
 <input type="password" name="confirm_password" required>
 </label>

</fieldset>

2.2.4 Building a calculator-style form using the input type number, the

input attributes min/max and data-*, and the element <output>

If you look at figure 2.5, you’d be forgiven for thinking there’s not much HTML5 form

functionality in the Order Details section.

 However, several HTML5 features are at work in the Order Details section of the form:

■ The number input type for the quantity input fields

■ The min and max attributes for validating the quantity inputs

■ The data-* attributes for storing price data

■ The <output> element for displaying totals

Listing 2.3 index.html—The Login Details form section

Both the
password and

confirm_password
fields are required

fields.

Results of calculations are shown

using the <output> element.

The fields for entering quantity values are

<input> elements with the type “number.”

Figure 2.5 There's more going on here than meets the eye. This simple-looking

form uses several HTML5 features: the number input type, min and max
attributes, data-* attributes, and the <output> element.

46 CHAPTER 2 Form creation: input widgets, data binding, and data validation

THE NUMBER INPUT TYPE

The number input type should display a new UI widget on supported browsers—a spin-

box component that allows the user to change the value by pressing the up button to

increase the value and the down button to decrease the value. An example of this is

shown in figure 2.6.

Two other new attributes that go hand in hand with the number input type are the min

and max attributes.

THE MIN AND MAX ATTRIBUTES

These attributes define the minimum and maximum numbers that a user can enter in

a number input field (or the bounds of a slider input using the range input type). Yet

data-* attributes, another new form of attribute, allow an elegant solution for auto-

matically calculating updated totals when users enter numbers.

DATA-* ATTRIBUTES

The order form you’re building will allow a user to enter a quantity for each of the

products in the form. The form should then automatically calculate the total price for

this item and the total order price. In order to do this, you’ll need to know the price

of a given item. In the past, you may have inserted a hidden field in each row to hold

the price for that item, or perhaps you would have stored the price data in a JavaScript

array and performed a lookup to get the price for a given product. Neither solution is

elegant—that’s where HTML5 data-* attributes come into play.

number input type 10.0 N/A 10.0* 11.0** 5.2

* Indicates partial support; although IE10 does support validation of the number
input type, it doesn’t display a spinbox widget for the field.

** Opera 11 correctly displays a spinbox widget for picking a number but doesn’t

enforce numeric validation on the field.

min and max attributes 6.0 N/A 10.0 10.6 5.0

Core API

Figure 2.6 The number input type allows the user to increment and

decrement the field value using the up and down buttons in the spinbox

on the right-hand side of the field. The user can also change the value by

typing a numeric value into the text field itself.

Core API

Core API

47Building a form’s user interface

HTML5 data-* attributes allow you to bind arbitrary key/value pair data to any ele-

ment. JavaScript can then read this data to perform calculations and further client-

side manipulation.

 Using data-* attributes is simple: prefix the key with data- to form the attribute

name and assign it a value. In this example, you’re binding a price to a quantity

input field:

<input type="number" data-price="399.99" name="quantity">

You can then listen to this field for changes and multiply the value of the user’s

input (the quantity) by the value of the data-price attribute to calculate the total

price of the item. You’ll see how to retrieve data-* attribute values a little later. First,

we want to talk about the final feature we’re introducing in this section: the new

<output> element.

THE <OUTPUT> ELEMENT

The name of this element explains its purpose—it’s used to display output to the user.

A typical use case for the <output> element is displaying the result of a calculation

based on some data, such as that entered by a user in an <input> element. You’ll learn

how to update the value of the <output> element later on, as the work progresses. For

now, you’ll add these new features to your application code.

STEP 4: CREATE THE ORDER DETAILS FORM SECTION

The following listing contains the code for the Order Details section. Let’s put the

number input type, min/max attributes, data-* attribute, and <output> element to work.

Notice how these new features can simplify programming tasks for HTML5-compatible

browsers. Add this code directly after the code from the previous listing.

<fieldset>
 <legend>Order Details</legend>
 <table>
 <thead>
 <tr>
 <th>Product Code</th><th>Description</th><th>Qty</th>
 <th>Price</th><th>Total</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>
 COMP001
 <input type="hidden" name="product_code" value="COMP001">

data-* attributes 7.0 6.0 N/A 11.1 5.1

Listing 2.4 index.html—The Order Details form section

Core API

48 CHAPTER 2 Form creation: input widgets, data binding, and data validation

 </td>
 <td>The Ultimate Smartphone</td>
 <td>
 <input type="number" data-price="399.99" name="quantity"
 value="0" min="0" max="99" maxlength="2">
 </td>
 <td>$399.99</td>
 <td>
 <output name="item_total" class="item_total">$0.00</output>
 </td>
 </tr>
 <tr>
 <td>
 COMP002
 <input type="hidden" name="product_code" value="COMP002">
 </td>
 <td>The Ultimate Tablet</td>
 <td>
 <input type="number" data-price="499.99" name="quantity"
 value="0" min="0" max="99" maxlength="2">
 </td>
 <td>$499.99</td>
 <td>
 <output name="item_total" class="item_total">$0.00</output>
 </td>
 </tr>
 <tr>
 <td>
 COMP003
 <input type="hidden" name="product_code" value="COMP003">
 </td>
 <td>The Ultimate Netbook</td>
 <td>
 <input type="number" data-price="299.99" name="quantity"
 value="0" min="0" max="99" maxlength="2">
 </td>
 <td>$299.99</td>
 <td>
 <output name="item_total" class="item_total">$0.00</output>
 </td>
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan="4">Order Total</td>
 <td>
 <output name="order_total" id="order_total">$0.00</output>
 </td>
 </tr>
 </tfoot>
 </table>
</fieldset>

Use a number
input type to

allow the user to
enter a quantity
for each product

in the order form.
The minimum

value is set to zero
using the min

attribute, whereas
the max is set to

99. Each field has
a data-* attribute,
data-price, which
holds the price of

the product.

The <output> element will store
the line total for each product and

has a default value of $0.00.

49Building a form’s user interface

2.2.5 Using the form input type month and input attribute pattern

The Payment Details section of the form asks users to enter their credit card details—

the name on the card, the card number, the expiry date, and the CVV2 security code,

found on the back of most cards. These fields use some of the HTML5 form features

introduced in the Contact Details section: required and placeholder input attri-

butes. The Payment Details section also uses some new features: the pattern input

attribute and the month input type.

THE MONTH INPUT TYPE

The month type allows the user to select a month and year combination from a date-

picker widget. HTML5 defines a number of date-related types: date, datetime, datetime-

local, month, week, and time. Browser support for these widgets and validation has been

slow moving—with the exception of Opera, which has had good support for these types

for quite some time, albeit with an ugly date-picker widget, as shown in figure 2.7.

Later in the chapter you’ll learn how to provide a fallback for the month input type,

which gives users something a little more intuitive than a plain text box to enter a

month value.

THE PATTERN ATTRIBUTE

The pattern attribute allows you to specify a regular expression pattern to test

against data input in a field. In the order form, we’ll use the pattern attribute on

both the card_number and card_cvv2 fields to ensure they’re numeric and of appro-

priate length.

month input type N/A N/A N/A 9.0 N/A

pattern attribute 10.0 4.0 10.0 11.0 N/A

Core API

Figure 2.7 The Opera date-picker

widget is used for all date/time input

types, including month, as shown in

this screenshot. When the date picker

is used to select a month, clicking any

day in the month will select that month.

Core API

50 CHAPTER 2 Form creation: input widgets, data binding, and data validation

When using the pattern attribute, you can give a hint to your users about what format

your data field requires by using the title attribute. This hint will be shown to users

in a tooltip when they move their mouse over the field, but it will also be appended to

the error message if users enter an invalid value in the field, as shown in figure 2.8.

STEP 5: BUILD THE PAYMENT DETAILS FORM SECTION

Let’s add those two new features: the month-picker to give the user a quick and easy

way to enter dates and the pattern attribute to define valid data patterns. Add the

code from the following listing to index.html, directly after the code from the previ-

ous listing.

<fieldset>
 <legend>Payment Details</legend>

 <label class="required">
 <div>Name on Card</div>
 <input name="card_name" required>
 </label>

 <label class="required">
 <div>Credit Card No.</div>
 <input name="card_number" pattern="[0-9]{13,16}"
 maxlength="16" required title="13-16 digits, no spaces">
 </label>

 <label class="required">
 <div>Expiry Date</div>
 <input type="month" name="card_expiry" maxlength="7"
 placeholder="YYYY-MM" required value="2015-06">
 </label>

 <label class="required">
 <div>CVV2 No.</div>
 <input name="card_cvv2" class="cvv" maxlength="3"
 pattern="[0-9]{3}" required title="exactly 3 digits">
 (Three digit code at back of card)
 </label>

</fieldset>

Listing 2.5 index.html—The Payment Details form section

Figure 2.8 When the pattern matching fails, the browser

will pick up extra information about the format required

from the title attribute. If it’s provided, tag it onto the

end of the error message displayed to the user.

The regular expression in the
card number field specifies

that the value should be
numeric and between 13 and
16 characters in length. The

title attribute is used to give
users more detail about the
field’s requirements, should

they attempt to submit an
invalid value.

The expiry date
for the card uses
the month input

type, which
displays a date-

picker widget on
supported

browsers and
should validate

based on the
format mask

YYYY-MM.

The CVV2 security code uses a pattern attribute and
title hint to specify that the field value should

contain exactly three numeric characters.

51Building a form’s user interface

TRY IT OUT!

You should be able to use the form now. In browsers with good support for HTML5’s

form features, you’ll be able to see the new input types, attributes, and validation func-

tionality in action. In the next section, we’ll allow users to choose whether they want

to save the data in the form for later completion or to submit it right away.

2.2.6 Allowing users to choose whether to save or submit a form: using

the input attributes formnovalidate and formaction

When users are filling out a form, they may not be able to complete the form in one

session; you need to provide them with a means of saving their progress and returning

to the form later. Because a user may need to leave the form quickly, forcing them to

correct any validation errors before saving doesn’t make sense; this is required only

when the form is finally submitted. Therefore, you need to give the user a way to

bypass validation.

 You can force an entire form to bypass validation using the new novalidate attri-

bute on the form itself. This is useful only if you want to use the new HTML5 form wid-

gets but don’t want to use any of the new validation features. An alternative approach

is to have a separate button for saving progress, which uses the formnovalidate

attribute to prevent the form from being validated when it’s used. In addition, you

may want to change the formaction property of the form to call a different URL

when saving the data rather than submitting it. You can do this in HTML5 with the

formaction attribute.

STEP 6: BYPASS FORM VALIDATION AND SAVE FORM DATA

Let’s change the order form’s Save Order button to make use of these new attributes:

■ Find the line in index.html that reads

<input type="submit" id="saveOrder" value="Save Order">

Replace that line with the following:

<input type="submit" id="saveOrder" value="Save Order" formnovalidate
formaction="/save">

■ Open the Order Form page in IE10 (and higher) and leave all the fields blank.

■ Click the Submit Order button, and an error message will pop up on the Name

field telling you that this field must be filled out.

■ Click the Save Order button, and you’ll notice that the validation will no longer

be performed, and the URL the form has been submitted to will be /save rather

than /submit.

That was easy, huh? Unfortunately, it’s not all that simple, because this won’t work on

browsers that don’t support these new attributes. Thankfully, with a little bit of Java-

Script you can fix this problem.

Core API

52 CHAPTER 2 Form creation: input widgets, data binding, and data validation

STEP 7: CHANGE THE FORM ACTION IN OLDER BROWSERS

On older browsers, the application should also be able to change the form action.

When the user submits the form, it should call a different URL than when saving

the data.

 Create a new file named app.js in the same directory as the index.html file. Add

the contents of the next listing to this file.

(function() {
 var init = function() {
 var orderForm = document.forms.order,
 saveBtn = document.getElementById('saveOrder'),
 saveBtnClicked = false;

 var saveForm = function() {
 if(!('formAction' in document.createElement('input'))) {
 var formAction = saveBtn.getAttribute('formaction');
 orderForm.setAttribute('action', formAction);
 }
 saveBtnClicked = true;
 };

 saveBtn.addEventListener('click', saveForm, false);
 };

 window.addEventListener('load', init, false);
})();

If you open the page in a browser that doesn’t support the formaction attribute, such

as IE9, clicking the Submit Order button submits the form to the /submit URL. Under

the same initial conditions, clicking the Save Order button submits the form to the /save

URL. You’ll also notice that the validation doesn’t work; don’t worry, you’ll add a fall-

back for that later in the chapter.

PROGRESS CHECK

To this point, you’ve created the major pieces of the form: the Contact Details, Login

Details, Order Details, and Payment Details sections. Using new HTML5 input types,

such as email or tel, the new input attributes such as required, and the general

data-* attribute and <output> element, can simplify coding for some browsers. Another

tedious task, the implementation of bypassing data validation when saving an incom-

plete form, can be simplified for browsers that support the new input attributes

formnovalidate and formaction.

 In the next section, you’ll implement the computational logic behind the Order

Details section, taking the quantity values entered by the user, then calculating and

displaying the total values for each item and the entire order.

Listing 2.6 app.js—Changing the form action in older browsers

When users click the
Save button, check if

their browser
supports the

formaction
attribute.

If the
browser
doesn’t
support

formaction,
manually set

the action
attribute on

the form
using the

setAttribute
method.

This flag will be used
later in the chapter
when you provide
fallback validation
for browsers that
don’t support
HTML5 validation.

53Calculating totals and displaying form output

2.3 Calculating totals and displaying form output

In the previous section, you used data-* attributes to associate key/value pair data

with the quantity field, and you added <output> elements to the totals for each

product and for the order total. Yet, in its present state, the order form doesn’t

seem to care what values you enter for the quantity fields—the total amounts are

always $0.00.

In this section, you’ll use the data-* attributes and <output> element to calculate the

totals and output the results to the user’s browser. Four steps will get you there:

■ Step 1: Add functions to calculate total values.

■ Step 2: Retrieve the value of quantity input fields.

■ Step 3: Retrieve price values and calculate line and form totals.

■ Step 4: Display updated totals on the order form.

2.3.1 Building calculation functions

We’ll start by building the functions that will perform the calculations in the order

form example.

STEP 1: ADD FUNCTIONS TO CALCULATE TOTAL VALUES

The code in listing 2.7 gets the relevant fields (quantity, item total, and order total)

from the DOM and sets up an event listener on each of the quantity fields to calculate

the totals whenever the user modifies the quantity value. The calculation code isn’t

shown in the listing; you’ll add that later in the chapter.

 Open app.js and add the following code to the end of the init function, below the

line saveBtn.addEventListener('click', saveForm, false);.

var qtyFields = orderForm.quantity,
 totalFields = document.getElementsByClassName('item_total'),
 orderTotalField = document.getElementById('order_total');

var formatMoney = function(value) {
 return value.toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",");
}

var calculateTotals = function() {
 var i = 0,
 ln = qtyFields.length,

In this section, you’ll learn

■ How to read input values in numeric format using the valueAsNumber property

■ How to access data from HTML5 data-* attributes

■ How to update the <output> element

Listing 2.7 app.js—Functions to calculate total values

Returns a
number
formatted for
currency, using
a comma as a
1,000 separator
character.

Calculates the
totals for each
item and the
overall order total.

54 CHAPTER 2 Form creation: input widgets, data binding, and data validation

 itemQty = 0,
 itemPrice = 0.00,
 itemTotal = 0.00,
 itemTotalMoney = '$0.00',
 orderTotal = 0.00,
 orderTotalMoney = '$0.00';

 for(; i<ln; i++) {
 }
};

calculateTotals();

var qtyListeners = function() {
 var i = 0,
 ln = qtyFields.length;

 for(; i<ln; i++) {
 qtyFields[i].addEventListener('input', calculateTotals, false);
 qtyFields[i].addEventListener('keyup', calculateTotals, false);
 }
};

qtyListeners();

We’ll now look at valueAsNumber, a new HTML5 property that allows you to get a

numeric representation of the value of an input field element.

THE VALUEASNUMBER PROPERTY

The value property of an input element like qtyFields[i] allows you to read the cur-

rent value of that element in JavaScript. But this value is always returned as a string. If

you needed to convert the value to a floating-point number, you likely used parse-

Float, but HTML5 has provided a new solution, the valueAsNumber property.

 When you read the valueAsNumber property of a number input type, the property

returns the number as a floating-point number. If you assign a floating-point number

to the valueAsNumber property of a number input type, the property will convert the

floating-point number to a string-based value.

The valueAsNumber property should be available on browsers that support the new

number input type—but what if the browser doesn’t support this and has fallen back

to a regular text input? In this case, you can fall back on the JavaScript parseFloat

Using valueAsDate for date and time fields

In the case of date/time fields, there is a property, valueAsDate, that works much

like the valueAsNumber property. When you use it to retrieve the value of a date-

oriented field, it will return a Date object. Similarly, you can use the property to set

the value of the field to a Date object.

You’ll add
calculation code in
this for loop later
in the section.

Perform an initial calculation, just in case
any fields are prepopulated. Because the
init function is called on page load, any
prepopulated data will be ready for access.

The input event doesn’t detect backspace or
delete keystrokes or cut actions in IE9, so

bind to the keyup event as well.

Calls the
qtyListeners

function to
add event

listeners to
fields.

Core API

55Calculating totals and displaying form output

function. The following statements are equivalent for reading the floating-point

value of a field:

value = field.valueAsNumber; //HTML5 version
value = parseFloat(field.value); //Fallback version

Similarly, the following statements provide the same result when modifying the floating-

point value of a field:

field.valueAsNumber = value; //HTML5 version
field.value = value.toString(); //Fallback version

STEP 2: RETRIEVE THE VALUE OF QUANTITY INPUT FIELDS

In the order form example, you’ll use the valueAsNumber property to get the value of

the quantity fields for each product row in the Order Details section. Inside the empty

for loop from listing 2.7, add the following code.

if(!!qtyFields[i].valueAsNumber) {
 itemQty = qtyFields[i].valueAsNumber || 0;
} else {
 itemQty = parseFloat(qtyFields[i].value) || 0;
}

Next you’ll learn how to read HTML5 data-* attribute values to get the prices for each

of the items, and then you’ll implement it in the sample application.

2.3.2 Accessing values from HTML5 data-* attributes

Earlier, you learned how to bind key/value pair data to elements using the new

data-* attributes in HTML5. This information is useful when you want to add extra

Why use valueAsNumber instead of parseFloat?

At this point, you may be wondering why you’d use valueAsNumber at all, when you

can use parseFloat instead, and it’ll work consistently across all browsers. value-
AsNumber offers a more concise way to convert values between string and floating-

point. Also, using valueAsNumber over parseFloat could lead to a tiny increase in

performance, but this is unlikely to be noticeable in most web applications. When the

usefulness of valueAsNumber was questioned on a W3C mailing list, HTML5 editor

Ian Hickson provided a use case where the valueAsNumber property was much more

concise than parseFloat—incrementing the value of a field programmatically.

Here’s an example:

field.valueAsNumber += 1; //HTML5 version
field.value = (parseFloat(field.value) + 1).toString() //Fallback

version

Listing 2.8 app.js—Getting the value of the quantity input fields

Testing for existence of valueAsNumber
property. The !! is used to cast the
property valueAsNumber to a Boolean
type. The first ! negates the truthness
of the property and converts it to a
Boolean. The second ! converts the
Boolean to its original truth state.

valueAsNumber
isn’t available in
older browsers,

so fall back to
use parseFloat.

56 CHAPTER 2 Form creation: input widgets, data binding, and data validation

data to an element that can be easily picked up and used in your JavaScript code. It’s

straightforward to read data-* attributes—each element has a dataset property that

contains all of the data-* attributes for that element. Each of the items in the data-

set property has a key name that matches the key name in the element markup,

with the data- prefix dropped. In listing 2.4 you defined the item’s price using the

data-price attribute. To retrieve that value, you can use the following code:

var price = element.dataset.price;

WARNING If you hyphenate your data-* attribute names, they’ll be camelcased
in the dataset property. For example, if you use the attribute name data-
person-name, you’d read this using element.dataset.personName rather
than element.dataset.person-name.

The dataset property is new in HTML5, but it’s not yet supported in all browsers.

Thankfully, we can show you an easy fallback that’ll work on all modern browsers (yes,

even IE6)—the getAttribute method. To get the value of the data-price attribute

using this fallback, you’d use the following code:

var price = element.getAttribute('data-price');

STEP 3: RETRIEVE PRICE VALUES AND CALCULATE LINE AND FORM TOTALS

In the order form example, let’s add some code to get the price of each item and use

it to calculate the total cost for each line by multiplying the quantity by the price, as

well as the total cost for the entire order. Add the code from the following listing right

below the code from the previous listing and before the terminating bracket of the

for loop.

if(!!qtyFields[i].dataset) {
 itemPrice = parseFloat(qtyFields[i].dataset.price);
} else {
 itemPrice = parseFloat(qtyFields[i].getAttribute('data-price'));
}

itemTotal = itemQty * itemPrice;
itemTotalMoney = '$'+formatMoney(itemTotal.toFixed(2));
orderTotal += itemTotal;
orderTotalMoney = '$'+formatMoney(orderTotal.toFixed(2));

Now that you’ve calculated the totals for each item and the overall order total, all

that’s left is to display these values on the form using <output> elements. By writing

values to the <output> element in browsers that support the <output> element, you

can access it through the form, for example:

var element = document.forms.formname.outputname;

Listing 2.9 app.js—Getting the price values using data-* attributes

Fall back to getAttribute
if the dataset property

isn’t available.

57Calculating totals and displaying form output

To update the value of an <output> element, you can set the value property:

element.value = newValue;

Let’s add the code you need to update the totals in your order form example.

STEP 4: DISPLAY UPDATED TOTALS ON THE ORDER FORM

Add the code from the next listing to app.js, right after the code from the previous

listing and before the terminating bracket of the for loop.

if(!!totalFields[i].value) {
 totalFields[i].value = itemTotalMoney;
 orderTotalField.value = orderTotalMoney;
} else {
 totalFields[i].innerHTML = itemTotalMoney;
 orderTotalField.innerHTML = orderTotalMoney;
}

TRY IT OUT!

At this point, the calculation of item line and overall order total values should be

working. Load the page in a modern browser and try changing the value of the quan-

tity fields—you should notice the totals change accordingly. This is demonstrated in

the screenshot in figure 2.9.

 Your form now has the ability to compute totals and validate data, but what if you

want to provide additional validation functions with custom error messages? In the

next section, you’ll extend the validation of the form to perform custom validation

using the Constraint Validation API and to style invalid fields using CSS3.

What to do for browsers that don’t support <output>

To access the element in browsers that don’t support <output>, you’ll need to give

the element an ID and use document.getElementById instead:

 var element = document.getElementById('outputid');

To update the value of the element, set the innerHTML property:

 element.innerHTML = newValue;

Listing 2.10 app.js—Displaying updated totals using the <output> element

Test if the <output>
element is supported
by the user’s browser.

Figure 2.9 When the user

enters a quantity for an item,

the application multiplies it by

the price for that item to get the

total, then adds up all totals to

get the overall order total.

58 CHAPTER 2 Form creation: input widgets, data binding, and data validation

2.4 Checking form input data with the Constraint
Validation API

Earlier in the chapter, you learned about some of HTML5’s new validation features—

the required, pattern, and min and max attributes—that enable the browser itself to

perform native validation on form input fields without requiring any additional Java-

Script. These attributes are only the beginning when it comes to HTML5 validation—

the Constraint Validation API offers many more possibilities.

The Constraint Validation API defines new properties and methods you can use to

detect and modify the validity of a given element. Using this API, you can provide

additional validation functionality and use custom error messages. The API allows you

to detect whether a field has an error and, if so, what type of error and what error mes-

sage you’ll display. It also provides a method that allows you to set your own custom

validation message that will be displayed natively by the browser.

In this section, as you continue working on this chapter’s sample application, you’ll

walk through two steps:

■ Step 1: Add custom validation and error messages to input fields.

■ Step 2: Detect form validation failure.

Also, although you won’t have to do any coding because we’ve already provided the

full CSS file for the sample application, at the end of the section we’ll show you how

to style invalid fields using CSS so you’ll be prepared to do so in your own apps.

First up, let’s explore and use some of the Constraint Validation API’s properties

and methods.

In this section, you’ll learn

■ How to use validation properties and methods to design custom validation tests

■ How to use the invalid event to detect invalid fields on a submitted form

■ How to use the new pseudo-class selectors in CSS3 to apply styling to invalid

fields without adding redundant class names to your input elements

Constraint Validation API 10.0 4.0 10.0 10.0 5.0*

* Indicates partial support; although Safari 5.0 supports the Constraints Validation API, it

doesn’t currently enforce it automatically and display inline error messages like other

browsers do.

59Checking form input data with the Constraint Validation API

2.4.1 Creating custom validation tests and error messages with the

setCustomValidity method and the validationMessage property

When a validation function isn’t supported by a browser or by HTML5, the application

will have to implement a custom validation test. In these cases, you’ll have to write

some JavaScript to test the validity of the entered data and provide a custom error

message when the validation fails. The Constraint Validation API simplifies the imple-

mentation of custom error messages by providing a setCustomValidity method and

a validationMessage property. Both constructs allow the application to assign an

error message to the <input> element’s validationMessage attribute. Determining

which construct to use will depend on the browser’s support for setCustomValidity.

STEP 1: ADD CUSTOM VALIDATION AND ERROR MESSAGES TO INPUT FIELDS

The order form example will perform custom validation for a number of tests using

the setCustomValidity method:

■ Full Name must be at least four characters long.

■ Password must be at least eight characters long.

■ Password and Confirm Password must match.

■ Name on Card must be at least four characters long.

Let’s add this custom validation to the app.js file. Add the code from this listing to the

end of the init function, directly after the call to qtyListeners.

var doCustomValidity = function(field, msg) {
 if('setCustomValidity' in field) {
 field.setCustomValidity(msg);
 } else {
 field.validationMessage = msg;
 }
};

var validateForm = function() {
 doCustomValidity(orderForm.name, '');
 doCustomValidity(orderForm.password, '');
 doCustomValidity(orderForm.confirm_password, '');
 doCustomValidity(orderForm.card_name, '');

 if(orderForm.name.value.length < 4) {
 doCustomValidity(
 orderForm.name, 'Full Name must be at least 4 characters long'
);
 }

 if(orderForm.password.value.length < 8) {
 doCustomValidity(
 orderForm.password,
 'Password must be at least 8 characters long'
);
 }

Listing 2.11 app.js—Performing custom validation

Core API

Check if the browser supports
the setCustomValidity method;
if not, manually set the value
of validationMessage.

Perform
custom

validation
check; if

that fails,
call the

doCustom-
Validity

function.

60 CHAPTER 2 Form creation: input widgets, data binding, and data validation

 if(orderForm.password.value != orderForm.confirm_password.value) {
 doCustomValidity(
 orderForm.confirm_password,
 'Confirm Password must match Password'
);
 }

 if(orderForm.card_name.value.length < 4) {
 doCustomValidity(
 orderForm.card_name,
 'Name on Card must be at least 4 characters long'
);
 }
};

orderForm.addEventListener('input', validateForm, false);
orderForm.addEventListener('keyup', validateForm, false);

TRY IT OUT!

If you load the form in a compatible browser and try to break the custom validation

rules described previously, you’ll notice that the custom error message will be dis-

played to the user, as illustrated in figure 2.10.

 Next you’ll use the invalid event, which fires any time the user tries to submit a

form with one or more fields that are marked as invalid.

2.4.2 Detecting a failed form validation with the invalid event

When the user attempts to submit a form that uses HTML5 validation features, the

submit event will only fire if the entire form has passed the validation tests. If you

need to detect when form validation has failed, you can listen for the new invalid

event. This event is fired when one of the following occurs:

■ The user attempts to submit the form and validation fails.

■ The checkValidity method has been called by the application and has

returned false.

STEP 2: DETECT ORDER FORM VALIDATION FAILURE

Let’s add a listener to the invalid event in the order form. Add the following code

directly after the code from the previous listing.

Perform
custom

validation
check; if

that fails,
call the

doCustom-
Validity

function.

The keyup event
binding is
required to
detect backspace,
delete, and cut
actions in IE9.

Figure 2.10 A demonstration of custom validation in action. In this case, the user has entered a valid

password (at least eight characters in length), but they’ve entered a value in the Confirm Password

field that doesn’t match the value in the Password field. This causes the error “Confirm Password must

match Password” to be displayed.

Core API

61Checking form input data with the Constraint Validation API

var styleInvalidForm = function() {
 orderForm.className = 'invalid';
}

orderForm.addEventListener('invalid', styleInvalidForm, true);

The invalid event is useful if you want to apply styling to erroneous form fields on a

submitted form. You’ll learn how to do that next.

2.4.3 Styling invalid elements using CSS3 pseudo-classes

One way to style invalid elements would be to iterate over the fields, checking if each

one is invalid and applying CSS classes to those that have errors. But this is a bit cum-

bersome, and you can do this much more elegantly using a bit of CSS3 magic.

CSS3 introduces a range of new pseudo-classes for styling form fields based on their

validity. These styles will be applied only if the condition defined by the pseudo-class is

true. The following self-explanatory pseudo-classes are available:

■ :valid

■ :invalid

■ :in-range

■ :out-of-range

■ :required

■ :optional

As you can probably guess, pseudo-classes make styling invalid fields easy. For exam-

ple, the following code would style any element declared invalid by the Constraint Val-

idation API with a light red background and a maroon border:

:invalid {
 background-color: #FFD4D4;
 border: 1px solid maroon;
}

But this declaration has a problem: Any field that uses validation attributes like

required or pattern will be initially invalid because these order form fields are blank.

As a result, those fields that apply validation attributes will display a red background

and maroon border, which isn’t nice.

 Fortunately, you can easily get around this by applying a class to the parent form

when the invalid event has fired and adding the pseudo-class selector, :invalid, to

the CSS rules for the input and selector elements in the form.

Listing 2.12 app.js—Listening to the invalid event

Add a class invalid to the <form> element.
You’ll use this in the next section to style
invalid fields on a submitted form.

Listens to the invalid event on the form
and all other elements in the form.

Core API

62 CHAPTER 2 Form creation: input widgets, data binding, and data validation

NOTE Please don’t change the CSS file that you included in your applica-
tion’s directory when you started the chapter. In this section, we’re walking
through the theoretical changes you might make rather than directing you to
make changes.

In the previous section, you applied a class to the parent form. So, now add the

pseudo-class selector, :invalid, to the CSS:

form.invalid input:invalid, form.invalid select:invalid,
form.invalid input.invalid, form.invalid select.invalid {
 background-color: #FFD4D4;
 border: 1px solid maroon;
}

The order form also uses the :required pseudo-class to style required fields with a

light yellow background:

input:required, select:required {
 background-color: lightyellow;
}

A screenshot of the required and invalid field styling is shown in figure 2.11.

At this point, the form is more or less fully functional for most recent versions of all

browsers (with the exception of Safari). In the next section, you’ll learn how to per-

form rock-solid feature detection using the Modernizr library and how to plug feature

gaps using polyfills.

2.5 Providing fallbacks for unsupported browsers

One of the main drawbacks to using HTML5’s new features is that browser support

isn’t uniform. Thus, you need to find ways to allow those with the latest and greatest

browsers to make use of HTML5 features while ensuring that those using slightly older

versions aren’t left behind.

Figure 2.11 The required fields are styled with a light yellow background (left), as you can see in the

Name on Card and Expiry Date fields. The invalid fields are styled with a light red background and a

maroon border (right), as shown in the Credit Card No. and CVV2 No. fields.

63Providing fallbacks for unsupported browsers

You’ll learn about these topics as you build out your form using these three steps:

■ Step 1: Build feature detection and conditionally deploy a fallback for month-

picker.

■ Step 2: Build fallback constraint validation for Safari 5.1.

■ Step 3: Build fallback constraint validation for IE9.

First up, though, we’d like to give you an overview of feature detection with Modernizr.

2.5.1 Detecting features and loading resources with Modernizr: an overview

An important concept when you’re working with HTML5’s new APIs is that of feature

detection—testing to see if the browser supports a given feature. Unfortunately, the

approaches for detecting feature support vary widely, making it difficult to remember

how to test for each individual feature. Another issue with feature detection is that you

may wish to load certain external resources only if the user’s browser supports (or

doesn’t support) a given feature. We don’t see a point, for example, to loading a large

WebGL support framework if the user’s browser doesn’t support WebGL. In a similar

way, why should we load a color-picker widget library if the user’s browser includes a

native widget that will be used instead? Dynamic loading of external resources is possi-

ble, but the JavaScript for doing so is hardly straightforward.

 Enter Modernizr, a purpose-built JavaScript library for performing bulletproof

feature detection and dynamic loading. When you include Modernizr in a web

page, you can detect support for a feature using a much easier syntax. For exam-

ple, to check to see if the user’s browser supports the Canvas element, you’d use

the following:

if(Modernizr.canvas) {
 //Canvas is supported, fire one up!
} else {
 //Canvas is not supported, use a fallback
}

In this section, you’ll learn

■ How Modernizr simplifies detection of browser support for various features of

HTML5 and conditionally loads fallbacks

■ How to plug gaps in browser support with polyfills, a JavaScript fallback, that will

only deploy if the browser lacks native support

■ How to use JavaScript to implement basic fallback validation for those browsers

that don’t yet fully support the Constraint Validation API

Core API

64 CHAPTER 2 Form creation: input widgets, data binding, and data validation

To detect Canvas support without Modernizr, you’d need to use the following:

if(!!document.createElement('canvas').getContext) {
 //Canvas is supported, fire one up!
} else {
 //Canvas is not supported, use a fallback
}

It’s also simple to use Modernizr to dynamically load resources (either .js or .css files)

based on a feature test. Consider this example, in which Modernizr will determine if

the browser supports the localStorage API. If supported, it will load the localstorage.js

file, which would likely contain code that interacts with this API. Otherwise, it will load

the localstorage-polyfill.js file, which contains a fallback.

Modernizr.load({
 test: Modernizr.localstorage,
 yep: 'localstorage.js',
 nope: 'localstorage-polyfill.js'
});

Moving on, let’s explore the concept of a polyfill and how you can use it to plug fea-

tures that aren’t supported by a given browser.

2.5.2 Using polyfills and Modernizr to plug the gaps

The term polyfill was coined by Remy Sharp and refers to a piece of code (or shim)

that aims to implement missing parts of an API specification. The origin of the term is

from a product named Polyfilla, which builders use to fill gaps or cracks in walls. Like-

wise, we developers can use polyfills to fill the gaps or cracks in various web browsers’

support for HTML5.

TIP Paul Irish, one of the key contributors to the Modernizr library, edits
and maintains a comprehensive list of polyfills, shims, and fallbacks for a wide
variety of HTML5 features. This list is available on Modernizr’s GitHub wiki at:
http://mng.bz/cJhc.

STEP 1: BUILD FEATURE DETECTION AND CONDITIONALLY DEPLOY A FALLBACK FOR MONTH-PICKER

Let’s look at how to use Modernizr to load a month-picker polyfill into those browsers

without a built-in month-picker. We expect that you’ve already placed the monthpicker.js

file from this chapter’s source code (available at http://manning.com/crowther2) in

the same directory as the files you’ve been building in this chapter. Now add the code

from the next listing to the end of the init function, directly after the code you

added from the previous listing.

Modernizr.load({
 test: Modernizr.inputtypes.month,
 nope: 'monthpicker.js'
});

Listing 2.13 app.js—Using the month-picker polyfill

Core API

If the user’s browser doesn’t support the
month input type, load the monthpicker.js file.

http://mng.bz/cJhc
http://manning.com/crowther2

65Providing fallbacks for unsupported browsers

If you load the order form in any browser that doesn’t natively support the month

input type, you should see the standard text input replaced with a month drop-down

and a year number input field. This is illustrated in the side-by-side screenshots in fig-

ure 2.12.

 You can apply the same technique to most of the HTML5 form’s functionality. In

fact, several projects are in the works that aim to polyfill the entire set of forms fea-

tures in HTML5. These projects include

■ Webshims Lib by Alexander Farkas (http://afarkas.github.com/webshim/

demos/)

■ H5F by Ryan Seddon (https://github.com/ryanseddon/H5F)

■ Webforms2 by Weston Ruter (https://github.com/westonruter/webforms2)

■ html5Widgets by Zoltan “Du Lac” Hawryluk (https://github.com/zoltan-dulac/

html5Forms.js)

Let’s wrap up this chapter by performing some basic validation, even on browsers that

don’t support the Constraint Validation API.

2.5.3 Performing validation without the Constraint Validation API

If you run the order form example in Safari 5.1 or older versions of other browsers

(such as IE9), you’ll notice that the validation functionality doesn’t work—the form

will submit without performing any validation. In this section, you’ll learn how to use

JavaScript to perform this validation and, if any errors are found, prevent submission

of the form.

STEP 2: BUILD FALLBACK CONSTRAINT VALIDATION FOR SAFARI 5.1

In the case of Safari 5.1, the Constraint Validation API is partially supported. This

means if you have an <input> element in your form with the required attribute set,

the element wouldn’t pass validation in Safari 5.1. But Safari doesn’t implement any

of the UI features, such as displaying error messages next to invalid fields, nor does

it prevent the form from submitting if errors exist in the form. Let’s start off by

reversing this and displaying an error message to the user if there are errors. Add

the code from the following listing to your app.js file, right after the code from the

previous listing.

Figure 2.12 Before the polyfill has been loaded, the Expiry Date field is represented merely by a text

input. After the polyfill has been loaded, the field has been replaced with a month drop-down and a

year number input field. The polyfill listens for changes to these fields and populates a hidden field,

which stores the month in YYYY-MM format. This hidden field will be sent to the server when the

form is submitted.

Core API

http://afarkas.github.com/webshim/demos/
https://github.com/ryanseddon/H5F
https://github.com/westonruter/webforms2
https://github.com/zoltan-dulac/html5Forms.js
http://afarkas.github.com/webshim/demos/
https://github.com/zoltan-dulac/html5Forms.js

66 CHAPTER 2 Form creation: input widgets, data binding, and data validation

var getFieldLabel = function(field) {
 if('labels' in field && field.labels.length > 0) {
 return field.labels[0].innerText;
 }
 if(field.parentNode && field.parentNode.tagName.toLowerCase()=== 'label')

{
 return field.parentNode.innerText;
 }
 return '';
}

var submitForm = function(e) {
 if(!saveBtnClicked) {
 validateForm();
 var i = 0,
 ln = orderForm.length,
 field,
 errors = [],
 errorFields = [],
 errorMsg = '';

 for(; i<ln; i++) {
 field = orderForm[i];
 if((!!field.validationMessage &&
 field.validationMessage.length > 0) || (!!field.checkValidity
 && !field.checkValidity())
) {
 errors.push(
 getFieldLabel(field)+': '+field.validationMessage
);
 errorFields.push(field);
 }
 }

 if(errors.length > 0) {
 e.preventDefault();

 errorMsg = errors.join('\n');

 alert('Please fix the following errors:\n'+errorMsg, 'Error');
 orderForm.className = 'invalid';
 errorFields[0].focus();
 }
 }
};

orderForm.addEventListener('submit', submitForm, false);

If you load the form in Safari and try to submit with invalid fields, you’ll get an error

message like the one shown in figure 2.13, and the invalid fields will highlight in red.

This isn’t the prettiest way to inform your users of errors—in practice you’d probably

try to mimic the behavior of one of the other browsers by showing an error bubble

next to the first error that’s encountered.

Listing 2.14 app.js—Preventing an invalid form from submitting in Safari 5.1

This
function
retrieves
the label

for a field
using

either the
labels

property
or by

checking if
the field’s

parent
element is

a label.

You previously added an event to the Save Order
button. When it’s clicked, a saveBtnClicked flag is
marked as true. This flag is used to determine
whether or not the form should be validated.

Loop through the fields in the order
form and check if each field is valid.

If the checkValidity method is available and
returns false, or if the validationMessage
property is populated, then the field
contains an error and should be pushed
into the errors and errorFields arrays.

If there are errors, this stops the form
from submitting and alerts the user with
the errors that have been found. Also, this
adds the class invalid to the order form to
ensure invalid fields are styled correctly
and sets the focus on the first invalid field.

67Providing fallbacks for unsupported browsers

STEP 3: BUILD CONSTRAINT FALLBACK VALIDATION FOR IE9

You need to solve one last issue. If you try to submit the form in IE9, you’ll see error

messages if any input fields don’t pass the custom validation tests you wrote earlier.

This is great, but IE9 doesn’t support the standard attribute-based validation parame-

ters or the email input type. To fix this, you need to create a function to scan the form

for the input field attributes required and pattern and input type email. When the

app has collected those fields, you’ll test their validity. Add the code from the next list-

ing to app.js, directly after the code from the previous listing.

var fallbackValidation = function() {
 var i = 0,
 ln = orderForm.length,
 field;

 for(;i<ln;i++) {
 field = orderForm[i];
 doCustomValidity(field, '');

 if(field.hasAttribute('pattern')) {
 var pattern = new
 RegExp(field.getAttribute('pattern').toString());
 if(!pattern.test(field.value)) {
 var msg = 'Please match the requested format.';
 if(field.hasAttribute('title') &&
 field.getAttribute('title').length > 0) {
 msg += ' '+field.getAttribute('title');
 }
 doCustomValidity(field, msg);
 }
 }
 if(field.hasAttribute('type') &&
 field.getAttribute('type').toLowerCase()=== 'email') {

Listing 2.15 app.js—Fallback validation in IE9

Figure 2.13 Safari now

validates the form, displaying

a generic alert dialog box with

a list of errors that the user

needs to correct. You’ll notice

that for each invalid field, the

field’s label has been picked

up along with the relevant

error message that’s to be

displayed to the user.

If the pattern attribute is set, this
matches its regular expression
against the field’s value.

If the input
type is email,
validate it
with the
defined
pattern.

68 CHAPTER 2 Form creation: input widgets, data binding, and data validation

 var pattern = new RegExp(/\S+@\S+\.\S+/);
 if(!pattern.test(field.value)) {
 doCustomValidity(field, 'Please enter an email address.');
 }
 }
 if(field.hasAttribute('required') && field.value.length < 1) {
 doCustomValidity(field, 'Please fill out this field.');
 }
 }
};

var pattern was chosen for brevity, not reliability. Designing a good pattern depends

on many issues and exceeds this chapter’s scope. To use this code, you need to call the

fallbackValidation function when validating the form. Locate the validateForm

function in your app.js file, and add the following snippet before the line if(order-

Form.name.value.length < 4) {.

if(!Modernizr.input.required || !Modernizr.input.pattern) {
 fallbackValidation();
}

The snippet uses Modernizr to test whether the required and pattern attributes are

supported, and if not, it calls the fallbackValidation function. If you run the exam-

ple in IE9, you should see that the validation includes checking required, pattern,

and email, as well as custom validation.

 This fallback, Modernizr, and the month-picker polyfill are only a sample of the

tools you can use to quickly provide backward compatibility in your HTML5 applica-

tions. You could easily expand on these to provide support for even older browsers

such as IE6 (hint: use a library like jQuery to help with things like event handlers and

DOM traversal). You shouldn’t let a lack of browser support stop you from using

HTML5 form features—it’s easy to fill any gaps.

2.6 Summary

HTML5 gives you a lot of functionality for improving web forms. New input types like

email and tel provide more widgets with less coding. Using the new input attribute,

pattern, enables many validation tasks to be done with no JavaScript. Creating cus-

tom validation tests and error message is now much easier with the Constraint Valida-

tion API. Also, binding data to HTML elements can be done more efficiently with the

data-* attribute.

 Unfortunately, browser support is spotty, and browser vendors have been relatively

slow to implement these features. Slow and partial implementation of form features

appears unlikely to change anytime soon. But this shouldn’t stop you from adding

HTML5 form functionality to your web apps. When you have a powerful tool like

Modernizr for detecting feature support and a growing list of polyfills, you have an

efficient way to add HTML5 form support to your applications.

If the required attribute is set, verify
that the user has entered a value.

69Summary

 During the development of this form, you had to provide the form with a save fea-

ture. The application had no way to save the form on the client, so the application had

to save the form on the server. Saving the form on the client’s local system would have

been a better solution; it would have delivered a faster response and required little or

no server resources. And that’s what you’ll learn in the next chapter: how to create

and save files on the client side with the File System API.

 You’ll also learn how to augment a form’s editing functions with the Editing and

Geolocation APIs. Sometimes, forms require users to add more than just plain num-

bers and names. For instance, text entered into a blog posting form will need special

formatting (for example, bolding or italics). The Editing API has powerful constructs

to quickly build in this kind of rich media support. If you need to insert a map, the

next chapter will show you how to use the Geolocation API to add a localized mapping

service to a web-based editor.

Chapter 3 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

Editing API Allowing users to compose and edit HTML content

■ execCommand()
■ File Editor view markup

81

77

Geolocation API Providing geographic data about the user’s location

■ getCurrentPosition() 82

Quota Management

API

Querying local storage about availability and usage; request-

ing a local storage quota

■ File System API 85

File API Reading file objects

■ readAsText() 89

File Writer API Writing data to files stored with the File System API

■ Editing files

■ CreateFormSubmit
89

91

Drag and Drop API Using the mouse to select files for import and export

■ Importing files using the drop and dragover events

■ Saving files using the draggable attribute and

dragstart event

97

98

Core API

