
Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

93

Implementing the Update Operators

6 Implementing the Update
Operators

6.1 Introduction

By now I hope it’s clear that, even without the reinements to be discussed in later chapters, the TR model is certainly

good for retrieval. (At least in principle! I’ll describe in more detail how retrievals are actually implemented in Chapter

10.) But what about updates?1 Conventional wisdom has always been that a given data structure can be good for either

retrieval or update, but not both. In a direct-image implementation, for example, indexes are generally held to be good

for retrieval but bad for update. So what about TR? How are updates done in TR? his chapter examines this question.

To repeat from Chapter 5, then, the operators we need to consider are as follows (see Section 5.3):

•	 INSERT: Insert a new record.

•	 DELETE: Delete the record “passing through” cell [i,j] of the Record Reconstruction Table.

•	 UPDATE: Update the record “passing through” cell [i,j] of the Record Reconstruction Table.

Note: he notion of a record “passing through” some cell of the Record Reconstruction Table was also explained in Section

5.3.

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE฀

AXA GLOBAL GRADUATE฀
PROGRAM 2015฀

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Go Faster!

94

Implementing the Update Operators

Section 6.2 immediately following discusses the three update operators in general terms; Sections 6.3 then presents a

detailed example, and Section 6.4 discusses the swap algorithm. Section 6.5 briely describes an alternative implementation

technique that makes use of an overlow structure. Finally, Section 6.6 ofers some observations regarding the performance

aspects of TR update operations.

6.2 Overview

It’s convenient to begin by discussing the INSERT operator speciically. Consider the suppliers ile shown in Fig. 6.1 (it’s

the same as the one shown in Fig. 4.1 in Chapter 4, except that the last record, the one for supplier S3, has been omitted).

Figs. 6.2 and 6.3 show the corresponding Field Values Table and a corresponding Record Reconstruction Table, respectively.

Exercise 6: Check that these tables are correct.

Fig. 6.1: A suppliers ile

Fig. 6.2: Field Values Table corresponding to the ile of Fig. 6.1

Fig. 6.3: Record Reconstruction Table corresponding to the ile of Fig. 6.1

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

95

Implementing the Update Operators

Now suppose the user asks the system to insert the following tuple into the suppliers relation:

In terms of the ile of Fig. 6.1, of course, we can imagine a new record corresponding to this tuple simply being appended

at the end, in position 5 (since record ordering within iles is arbitrary). If we now rebuild the Field Values Table, it’ll

appear as shown on the let-hand side of Fig. 6.4 (a copy of the Field Values Table from Fig. 4.3 in Chapter 4). And if

we then build a corresponding Record Reconstruction Table, it might appear as shown on the right-hand side of Fig. 6.4

Fig. 6.4: Field Values Table and Record Reconstruction Table after inserting supplier S3

As you can see by comparing Fig. 6.4 with Figs. 6.2 and 6.3, respectively, inserting supplier S3 has caused both the Field

Values Table and the Record Reconstruction Table to change dramatically. It follows that INSERT operations have the

potential to be quite disruptive, and hence (possibly) to display very poor performance. What can be done about this

problem?

Well, let me say right away that the efect on the Field Values Table is actually not as dramatic as it might appear. Although

I’ve been calling it a table and showing it as a table in igures like Fig. 6.4, the Field Values Table doesn’t necessarily have

to be physically stored as a table; in fact, it almost certainly won’t be. Much more likely, it’ll be stored “column-wise” as

a set of vectors (one-dimensional arrays), or possibly as a set of chained lists, one such vector or list for each column.

Indeed, such an implementation is virtually certain to be used in practice if the reinements to be discussed in Chapters

8 and 9 are adopted, as we’ll see.2

For deiniteness, let’s assume a vector implementation. Of course, those vectors will be kept in the sort orders associated

with the corresponding columns of the Field Values Table. As a consequence, the insert point in each such vector for the

pertinent ield value from the new record is easily determined—for example, by binary search—and the vectors themselves,

and hence the overall Field Values Table, are thus easily maintained.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

96

Implementing the Update Operators

he Record Reconstruction Table is another matter, however. Is there a way to avoid rebuilding the entire table every

time a new record is inserted into the user ile? he answer, of course, is yes. One possible approach is as follows (the

details are a little complicated, but the fundamental idea is straightforward): When a record is deleted from the user ile,

we3 don’t physically remove the corresponding entries from the Field Values and Record Reconstruction Tables, we just

lag those entries as “logically deleted.” hose lagged cells can then be regarded as free space in each of the two tables.

hen, when we subsequently insert a new record, it might be possible to use such lagged cells for the record in question

(removing the lags, of course), thereby avoiding the overhead of completely rebuilding the Record Reconstruction Table

(and the overhead of completely rebuilding the Field Values Table also, as a matter of fact). Detailed examples illustrating

this process are given in Sections 6.3 and 6.4 below.

I should immediately add that the scheme just described in outline makes considerably more sense if the reinements

to be discussed in Chapters 8 and 9 are adopted. If they are—and in practice it’s virtually certain they will be—then it

becomes possible for distinct records at the ile level to share entries in the Field Values Table. For example, the supplier

records for suppliers S2 and S3 might share the entry in that table that contains the city name Paris. hus, when a new

record is inserted, it might well be the case that most if not all of the ield values in that record already exist in the Field

Values Table—perhaps logically deleted, perhaps not—and such values can simply be shared by that new record with

previously existing records. In efect, the ability to share ield values in this way means that INSERT operations work at the

ield level instead of the usual record level—yet another signiicant diference between the TR approach and conventional

implementation technology. Of course, analogous remarks apply to DELETE and UPDATE operations also, as you’d surely

expect.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Go Faster!

97

Implementing the Update Operators

But what if we want to insert new records before any existing records have been deleted (or, perhaps, before enough have

been deleted)? Well, in conventional database systems, it’s customary to leave a certain amount of free space when the

database is initially loaded, in order to accommodate future growth more gracefully. In the same kind of way, with TR,

we can specify when we irst load the database that certain cells in the Field Values and Record Reconstruction Tables are

to be initialized (lagged) as “free-space” cells. In this way, the database can start out with the ability to handle subsequent

INSERT operations in a nondisruptive manner.

It follows from all of the above that the algorithm for implementing INSERT operations looks something like this (and

here I’m assuming that ield values are indeed shared among records in the manner to be explained in detail in Chapter 8):

Step 1: Let r be the record to be inserted, and let f1, f2, ..., fn be the ield values within r.

Step 2: For each j in turn (j = 1, 2, ..., n), do Step 3.

Step 3: Search column j of the Field Values Table for j. If j is not found, insert it. Adjust the Field Values Table

to show that the j entry is used by record r. Adjust the Record Reconstruction Table accordingly.

Note: Just what it means to adjust the Field Values Table to show that the j entry is used by record r is explained in Chapter

8 (Section 8.2, subsection “Row Ranges”).

As for DELETE operations, we already know in essence how these operations are implemented: he appropriate entries

in the Field Values and Record Reconstruction Tables are simply lagged as logically deleted and thus become free-space

cells. As noted earlier, DELETEs are thus efectively done at the ield level, rather than the more usual record level.

Analogous remarks apply to UPDATE operations as well, of course, since they can be thought of logically as a DELETE

followed by an INSERT. Note in particular that if record r is updated to become record r',4 but the value of ield F in r'

is the same as that in r (meaning, loosely, that “ield F hasn’t been updated”), then the internal-level operation that the

implementation has to execute for ield F is essentially “Do nothing”!—in efect, the new record r' and the old record r

can simply share the applicable ield value. (Of course, the foregoing is just a manner of speaking; I don’t mean to suggest

that the old record r is still kept around ater the update has been done. hough it might be, if the database in question

is a temporal one [42].)

6.3 A Detailed Example

Now let’s take a closer look at exactly how updates are done in TR. Note: Actually TR supports a variety of distinct update

techniques, and it’s obviously not possible to cover them all in a book of this nature. he explanations that follow are thus

certainly not meant to be exhaustive; rather, they’re ofered just as an indication of the kinds of techniques that might be

used in practice.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

98

Implementing the Update Operators

By way of an example, consider the suppliers ile shown in Fig. 6.5 (it’s the same as the one shown in Fig. 6.1, except

that supplier S3 has been reinstated and two new suppliers, S6 and S7, have been added). Figs. 6.6 and 6.7 show the

corresponding Field Values Table and a corresponding Record Reconstruction Table, respectively. Exercise 7: Once again,

check that these tables are correct.

Fig. 6.5: The suppliers ile of Fig. 6.1 after inserting suppliers S3, S6, and S7

Fig. 6.6: Field Values Table corresponding to the ile of Fig. 6.5

Fig. 6.7: Record Reconstruction Table corresponding to the ile of Fig. 6.5

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

99

Implementing the Update Operators

Now suppose the user asks for the records—or, rather, the tuples corresponding to the records—for suppliers S3 (Blake) and

S7 (Patel) to be deleted. All the implementation does at this point is follow the applicable zigzags and lag the applicable

cells in the Field Values and Record Reconstruction Tables as free space (see Figs. 6.8 and 6.9, where the lags are shown

as asterisks). Note: I’ll refer to such lagged cells as free cells from this point forward.

Fig. 6.8: Field Values Table after deleting suppliers S3 and S7

Fig. 6.9: Record Reconstruction Table after deleting suppliers S3 and S7

Now suppose the user asks the system to insert the following tuple into the suppliers relation:

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

100

Implementing the Update Operators

Note: In practice, the DELETE that caused the old S3 tuple to be deleted and the INSERT that’s now asking for the new

S3 tuple to be inserted might have been bundled into a single UPDATE request, of course:

UPDATE S

SET SNAME = NAME(‘Paige’),

STATUS = 40

WHERE S# = S#(‘S3’) ;

Be that as it may, you can see from Fig. 6.8 that free cells for supplier number S3, status 40, and city name Paris do all exist

in the Field Values Table. As for the supplier name, Paige, at least there is a free cell at the right place in the applicable sort

order (namely, that for Patel), so we can use that one, too, so long as we change the name it contains from Patel to Paige.

Figs. 6.10 and 6.11 show the revised versions of the Field Values Table and the Record Reconstruction Table, respectively.

Note that we’ve removed the lags in both tables from the free cells we’ve used (namely, cells [3,1], [6,2], [7,3], and [7,4]).

We’ve also revised the Record Reconstruction Table so that the corresponding cells are linked together into a zigzag

appropriately (to be speciic, we’ve changed the contents of cell [3,1] from 2 to 6 and the contents of cell [7,3] from 3 to 7).

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your

topic area. Find out what you can do to improve

the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Go Faster!

101

Implementing the Update Operators

Fig. 6.10: Field Values Table after inserting (a revised version of) supplier S3

Fig. 6.11: Record Reconstruction Table after inserting (a revised version of) supplier S3

6.4 The Swap Algorithm

As indicated in Sections 6.2 and 6.3, a key notion underlying the TR update algorithms is that cells in the Field Values

Table and Record Reconstruction Table can be “recycled” (that is, they can be used and reused, over and over again). To

be more speciic, deletions cause certain “holes” (free cells) to open up in the TR tables, and those “holes” can then be

used by subsequent insertions. However, one important point I deliberately glossed over previously is that it might be

necessary to move those “holes” around from time to time within their containing tables (I’m speaking pretty loosely here,

as I’m sure you’ll appreciate). he update algorithms are designed to work in such a way as to keep that moving around

localized to as small a region as possible, with the overall objective of keeping the TR tables as static as possible and

thereby minimizing the overhead. A variety of techniques can be used to achieve this desirable efect; in this section, I

want to focus on just one of those techniques: namely, the so-called swap algorithm [63].

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

102

Implementing the Update Operators

In order to illustrate the swap algorithm in action, as it were, let me revise the example from the previous section as

follows. First, assume that the Field Values Table and Record Reconstruction Table are again as given in Figs. 6.8 and 6.9,

respectively. Now assume that the tuple to be inserted looks like this:

Referring again to Fig. 6.8, we see that:

•	 Free cells exist in the Field Values Table for supplier number S3 and supplier name Blake, so we can use

those cells directly, as in the example in the previous section. hat takes care of the S# and SNAME values.

•	 As for the city name, Athens, there’s no free cell for Athens as such, but at least there’s a free cell in a suitable

position (where by “suitable” I mean a position that doesn’t disturb the sort order)—namely, the free cell for

Haifa. So we can use that cell too, changing the name it contains from Haifa to Athens. hat takes care of the

CITY value.

But what do we do about the STATUS value? Not only is there no free cell for status 20, there isn’t even any free cell in

the right position (that is, immediately before or ater the sequence of cells for status 20 that do currently exist).

Observe, however, that at least there is a free STATUS cell, for status 30, in row 6 of the Field Values Table (that is, the cell

in question is cell [6,3]). If we could somehow swap that cell with cell [4,3]—which also contains the status value 30—the

free cell would then be immediately adjacent to the existing sequence of cells for status 20, and we could then use it for

the new record, just as we used the Haifa cell for Athens.

In order to implement that swap, we need to reroute the zigzag in the Record Reconstruction Table that runs through cell

[4,3] so that it runs through cell [6,3] instead. hat zigzag corresponds (as it happens) to supplier S5, and the efect of the

swap will be that supplier S5’s status value, 30, will then be the one in cell [6,3]—instead of cell [4,3]—of the Field Values

Table. Ater making the swap, we can lag cell [4,3] as free and “unlag” cell [6,3] to mark it “unfree.” To spell out the details:

•	 From Fig. 6.9, we can see that the zigzag for supplier S5 currently looks like this (that is, it currently involves

the following sequence of Record Reconstruction Table cells):

[5,1], [1,2], [4,3], [1,4]

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

103

Implementing the Update Operators

•	 he swap can thus be done by:

a) Changing the contents of cell [1,2] of the Record Reconstruction Table from 4 to 6, and

b) Changing the contents of cell [6,3] of the Record Reconstruction Table from 7 to 1.

•	 he zigzag for supplier S5 will then look like this:

[5,1], [1,2], [6,3], [1,4]

(as required).

Now we can replace the status value 30 in cell [4,3] of the Field Values Table by the status value 20 (and lag that cell as

free and remove the lag from cell [6,3], at the same time lagging and unlagging the corresponding cells in the Record

Reconstruction Table analogously).

Ater all the foregoing activity has been completed, there’s a free cell in the Field Values Table for every value in the record

that we’re trying to insert. We can therefore accomplish the desired insertion by linking those free cells into a zigzag in

the Record Reconstruction Table—to be speciic, a zigzag that looks like this:

[3,1], [2,2], [4,3], [3,4]

By 2020, wind could provide one-tenth of our planet’s

electricity needs. Already today, SKF’s innovative know-

how is crucial to running a large proportion of the

world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-

nance. These can be reduced dramatically thanks to our

systems for on-line condition monitoring and automatic

lubrication. We help make it more economical to create

cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,

industries can boost performance beyond expectations.

Therefore we need the best employees who can

meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Go Faster!

104

Implementing the Update Operators

In other words, we set cell [3,1] to contain 2, cell [2,2] to contain 4, cell [4,3] to contain 3, and cell [3,4] to contain 3 as

well. Also, of course, we remove the lags from all of these previously free cells, in both the Field Values Table and the

Record Reconstruction Table. he net efect is shown in Figs. 6.12 and 6.13.

Fig. 6.12: Field Values Table after inserting (a diferent revised version of) supplier S3

Fig. 6.13: Record Reconstruction Table after inserting (a diferent revised version of) supplier S3

Points Arising

he swap algorithm as described above has an interesting side efect in our particular example, as follows: While the

Field Values Table still has one set of free cells ater the INSERT (because we started with seven records, deleted two, and

then inserted one), those cells are no longer chained together. Equivalently, the Record Reconstruction Table also has

one set of free cells, but those cells don’t form a valid zigzag—the pointer chain is broken. In general, in fact, if we start

chasing pointers from a free cell in the Record Reconstruction Table, we won’t necessarily ind ourselves in a closed ring.

Of course, this fact isn’t very important, because we never need to do record reconstruction on deleted records anyway.

Another consequence is that, given any particular column of the Record Reconstruction Table, certain row numbers will

be duplicated in that column and others will be missing (in general). For example, in Fig. 6.13, columns 3 and 4 both

include two 3’s and no 7. Note, however, that within any such column:

•	 No two “unfree” cells will ever contain the same row number.

•	 Any missing row number would, if present, point to a free cell.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

105

Implementing the Update Operators

he algorithm has another side efect, too. Suppose we process column 3 (the STATUS column) of the Record Reconstruction

Table top to bottom in order to reconstruct the suppliers ile in ascending status sequence. With the original version of

that table as shown in Fig. 6.7, supplier S5 will precede supplier S6 in the result; with the version of the table shown in

Fig. 6.13, by contrast, supplier S6 will precede supplier S5 instead.

And one more point: In the particular example discussed above, the necessary free cell for the new status value, 20, was

found in the Field Values Table in the immediately adjacent sequence of cells (namely, the sequence of cells for the next

recorded status value, 30). Suppose there had been no free “30” cell but (say) a free “40” cell instead. hen two swaps

would have been necessary, one to make that free “40” cell into a free “30” cell, and then another to make that free “30”

cell into a free “20” cell. In general, if there are several intervening sequences without any free cells, then several swaps

will need to be carried out, each swap moving the free cell one position closer to the place where it’s really needed.

6.5 Using an Overlow Structure

In Section 6.2, we saw that insertion of a new record doesn’t always require insertion of brand new ield values; in fact,

we’ll see in Chapters 8 and 9 that it very rarely requires insertion of brand new ield values. And if there are no new ield

values to insert, the INSERT operation will clearly be faster than it would otherwise be. In Sections 6.3 and 6.4, by contrast,

we considered what happens if there are indeed new ield values to insert; to be speciic, in Section 6.4 we described the

swap algorithm for moving “holes” around to get them into the right place for the new values. But there’s another way to

deal with such new values—one that involves no swapping as such—that might be more eicient in practice, especially in

a disk-based implementation. I don’t want to get into a lot of detail here, but in essence the technique involves storing the

new values in a separate overlow structure and periodically merging the data from that structure into the main database.5

his technique has the properties that:

•	 he overlow structure can be thought of as containing its own private Field Values Table and Record

Reconstruction Table; thus, for example, binary searches can be used on the overlow data.

•	 he principal Field Values Table and Record Reconstruction Table—and hence the main database—remain

unchanged most of the time; they change only during the process of performing the periodic merge (see the

point immediately following).

•	 he period between successive merges can be quite lengthy. For example, imagine a database containing

sales records for every day of the past ive years, with a nightly batch insert for that day’s igures. Assume

that batch insert corresponds to roughly one twentieth of one percent of the total database size. If we allow

the overlow structure to grow to (say) ten percent of the total database size before we do the merge, the

period between successive merges will be of the order of six or seven months.

Using an overlow structure has another big advantage, too: It greatly simpliies the familiar backup and recovery process.

In outline, that process works as follows:

•	 We create a full backup copy of the entire database only when we do a merge (which, as we’ve just seen, isn’t

likely to be all that oten).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

106

Implementing the Update Operators

•	 We create a backup copy of the (comparatively small) overlow structure every time it’s been signiicantly

changed—perhaps every night.

•	 If it’s necessary to perform recovery, we simply restore the most recent full backup copy and the most recent

overlow backup copy; it’s not like having to apply a whole series of “incremental backups,” which is what

conventional systems typically do have to do.

6.6 Some Remarks on Performance

I’ll close this chapter with a few remarks on the performance aspects of TR update operations. he fact is, a TR

implementation should signiicantly outperform traditional DBMSs on updates as well as on queries. here are several

reasons for this state of afairs:

•	 DELETE and UPDATE: Note irst that certain of the remarks made in connection with retrieval performance

in Chapter 5 (Section 5.2) apply to the performance of DELETE and UPDATE operations also. To be

speciic, it’s oten the case that a signiicant part of the work involved in deleting or updating data is in

inding the relevant data in the irst place—and TR is very good at inding data, and inding it fast.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Go Faster!

107

Implementing the Update Operators

•	 INSERT: Suppose we’re trying to insert a new supplier tuple, for supplier S9, say. hen we want to check—or

rather, as users, we want the system to check—that there’s no tuple for supplier S9 in the suppliers relation

already. At the implementation level, this requirement implies that the system has to search for a record for

supplier S9 before doing the INSERT (if it inds one, the INSERT will have to be rejected, of course). As we

saw in Section 6.2, however, it’s going to do that search anyway. Once again, therefore, we’re talking about

the problem of “inding data and inding it fast” (see the previous paragraph; see also the discussion of

integrity constraints in Chapter 10, Section 10.10).

•	 Lack of redundancy: here are two points here. First, since there aren’t any auxiliary structures such as

indexes, there aren’t any auxiliary structures such as indexes to update. Second, the reinements to be

discussed in Chapters 8 and 9 have the efect of reducing data redundancy still further—dramatically so, in

fact—thereby simplifying the update process still further (and considerably).

•	 Sorted data: he precise means (that is, the Field Values Table) by which the stored data is kept in many

sort orders simultaneously makes it easy to maintain those sort orders when updates occur—certainly much

easier than the corresponding task with indexes or other conventional auxiliary structures.

•	 Limiting the scope of impact: In the real world, even in extremely active systems, updates tend to afect

only a tiny portion of the overall database. he TR update algorithms are designed to take advantage of

this fact; in efect, they regard the database as a large and static thing, and they keep all changes in a much

smaller dynamic repository.6 In other words (as I said near the beginning of Section 6.4, more or less), they

generally try to keep the impact of any given user-level update conined to as small a portion of the database

as possible, thereby minimizing the amount of update overhead. his philosophy is in marked contrast to

that found in conventional systems; in particular, it’s very diferent from what happens with conventional

indexing, where everything is assumed to be completely dynamic (at least potentially), and individual

updates can ripple out and cause further updates that need to be applied “all over the database.”

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

108

Implementing the Update Operators

Endnotes

1. I remind you from Chapter 1 that I use the term “update” (lower case) to mean the INSERT, DELETE, and

UPDATE operators considered generically, and the term “UPDATE” (upper case) to mean the UPDATE

operator speciically.

2. It isn’t particularly relevant to the present discussion, but you should be aware that analogous remarks apply

to the Record Reconstruction Table as well—that is, that table too will almost certainly be stored column-

wise. And the same is true for the Permutation and Inverse Permutation Tables also, if those tables are

physically stored.

3. “We” here really means the DBMS.

4. I’m being sloppy here. As explained in references [32] and [40], it would be more accurate to talk in terms

of record r being replaced by record r'—but it’s conventional to talk in terms of records being updated, even

though, strictly speaking, records are values and can’t possibly be updated. Analogous remarks apply to ields

also.

5. In fact, the technique can be used for values that aren’t brand new, too.

6. his perception is supported very directly by the overlow structure mechanism sketched in the previous

section, but it’s efectively supported by TR’s other update techniques as well.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

