
Part II
Algorithms

Standard algorithms 5
Summary: Previous chapters describe the basic effects of algorithms on containers.
This chapter is a catalog or reference for algorithms.

Note: A thorough reading of two or three sections of this chapter to learn the struc-
ture and a quick leafing through the rest will be sufficient to give rapid access to a
suitable algorithm with sample applications. Only in Part III does the combination
of algorithms and containers reveal new aspects.

Without especially mentioning it, all the algorithms presented in this chapter are
in namespace std. They are completely separated from the special implementation
of the containers on which they work. They only know iterators which can be used to
access the data structures in containers. The iterators must satisfy only a few criteria
(see Chapter 2). For this reason, iterators can be both complex objects and simple
pointers. Some algorithms bear the same names as container methods. However,
because of the different way in which they are used, no confusion will occur.

The complete separation can, however, also have disadvantages: a very generic
find() algorithm will have to search a container from beginning to end. The com-
plexity is O(N), where N is the number of elements of the container. If the con-
tainer structure is known, find() can be much faster. For example, the complexity
of search in a sorted set container is only O(log N). Therefore, there are several al-
gorithms which under the same name appear both as a generic algorithm and as a
member function of a container. Where the situation allows, the made-to-measure
member function is to be preferred.

5.1 Copying algorithms
For reasons of speed, some algorithms exist in two variations: the first works directly
on the container, the second copies the container. The second variation is always
sensible when a copy process is required, for example to keep the original data, and
when, with regard to complexity, the algorithm itself is no more expensive than the
copy process. Let us look at the different cases:

1. A copy B is to be made of container A, removing all elements from the copy which

86 STANDARD ALGORITHMS

satisfy a given condition, for example all clients with less than 50,000 dollars of
turnover. The following alternatives exist:

• copy A to B and remove all unwanted elements from B, or

• copy all elements from A to B, but only if they satisfy a given criterion.

Both alternatives are of complexity O(n). It is, however, obvious that the sec-
ond alternative is faster and therefore a copying variation of the algorithm makes
sense.

2. A sorted copy B is to be generated of container A. Here too, two possibilities exist:

• copy A to B and sort B, or

• take all elements of A and insert them sorted into B.

The second possibility is no better than the first one. The sorting process is at
least of complexity O(N log N), thus definitely greater than copying (O(N)).
Thus, a variation of a sorting algorithm which at the same time copies is simply
superfluous. If a copy is required, the first variation can be chosen without any
loss of speed.

In the following sections, the copying variations are mentioned, provided they
exist. All algorithms which as well as their proper task also generate a copy of a
container bear the suffix _copy in their names.

5.2 Algorithms with predicates
‘Predicate’ means a function object (see Section 1.6.3) which is passed to an algo-
rithm and returns a value of type bool when it is applied to a dereferenced iterator.
The dereferenced iterator is simply a reference to an object stored in the container.

The function object is to determine whether this object has a given property.
Only if this question is answered with true is the algorithm applied to this object.
A general scheme for this is:

template <class InputIterator, class Predicate>

void algorithm(InputIterator first,

InputIterator last,

Predicate pred) {

while (first != last) {

if(pred(*first)) { // does predicate apply?
show_it(*first); // ... or another function

}

++first;

}

}

The Predicate class must not alter an object. An example is given on page 89.

NONMUTATING SEQUENCE OPERATIONS 87

Some algorithms that use predicates have a suffix _if in their names, others do
not. A feature common to all of them is that they expect a predicate in the parameter
list.

5.2.1 Algorithms with binary predicates
A binary predicate requires two arguments. This allows you to formulate a condition
for two objects in the container, for example a comparison. The algorithm might
contain the following kernel:

if(binary_pred(*first, *second)) { // does the predicate apply?
do_something_with(*first, *second);

// ...

In this sense, you can also use objects of the classes of Table 1.2 as binary
predicates. The second parameter of a binary predicate, however, need not be an
iterator:

template <class InputIterator,

class binaryPredicate,

class T>

void another_algorithm(InputIterator first,

InputIterator last,

binaryPredicate bpred,

T aValue)

{ while (first != last) {

if(bpred(*first, aValue)) {

show_it(*first);

}

++first;

}

}

5.3 Nonmutating sequence operations
The algorithms described in this section work on sequences, but do not alter them.
With one exception, all algorithms are of complexity O(N), where N is the number
of elements in the sequence. The exception is the search algorithm.

5.3.1 for_each
The for_each algorithm causes a function to be executed on each element of a
container. The definition is so short and simple that it is shown in its entirety:

template <class InputIterator, class Function>

Function for_each(InputIterator first,

88 STANDARD ALGORITHMS

InputIterator last, Function f) {

while(first != last)

f(*first++);

return f;

}

The returned object f is mostly ignored. However, the returned object can trans-
port data outside the function body, e.g. the maximum value of the iterated sequence.
In the following program, the function is the display of an int value which, together
with the for_each algorithm, writes a vector on the standard output.

The class Function in the above definition is a placeholder which could as
well be the type of a function object. The Increment class for incrementing an int
value is employed in this way. Of course, although for_each itself is a nonmutating
algorithm, values of the sequence can be changed by the function or function object.
Both possibilities are shown below.

#include<algorithm>

#include<vector>

#include<iostream>

using namespace std;

void display(int x) { // nonmutating function
cout << x << ’ ’;

}

class Increment { // functor class
public:

Increment(int i = 1) : howmuch(i) {}

void operator()(int& x) { // mutating operator
x += howmuch;

}

private:

int howmuch;

};

int main() {

vector<int> v(5); // vector of 5 zeros
// v is not changed:
for_each(v.begin(), v.end(), display); // 0 0 0 0 0
cout << endl;

// with Increment constructor
// v is changed by the functor, not by for_each:
for_each(v.begin(), v.end(), Increment(2));

for_each(v.begin(), v.end(), display); // 2 2 2 2 2
cout << endl;

// with Increment object
Increment anIncrement(7);

NONMUTATING SEQUENCE OPERATIONS 89

// v is changed by the functor, not by for_each:
for_each(v.begin(), v.end(), anIncrement);

for_each(v.begin(), v.end(), display); // 9 9 9 9 9
}

In the example, the return value of for_each(), the function object, is not used..

5.3.2 find and find_if
There are two kinds of find() algorithm: with and without a compulsory predicate
(as find_if()). It seeks the position in a container, let us call it C, at which a given
element can be found. The result is an iterator which either points to the position
found or is equal to C.end(). The prototypes are:

template <class InputIterator, class T>

InputIterator find(InputIterator first,

InputIterator last,

const T& value);

template <class InputIterator, class Predicate>

InputIterator find_if(InputIterator first,

InputIterator last,

Predicate pred);

The way the find() algorithm functions is extensively discussed in Section
1.3.4, with corresponding examples on pages 6 ff. Therefore, we will look at only
one example for find_if(), that is, a find() with the predicate. In a sequence of
numbers, the first odd number is sought, with the criterion ‘odd’ checked by means
of a function object.

// k5/find_if.cpp
#include<algorithm>

#include<vector>

#include<iostream>

void display(int x) { std::cout << x << ’ ’;}

class odd {

public:

// odd argument yields true
bool operator()(int x) { return x % 2;}

};

int main() {

std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

v[i] = 2*i; // all even
v[5] = 99; // an odd number

90 STANDARD ALGORITHMS

// display
std::for_each(v.begin(), v.end(), display);

std::cout << std::endl;

// search for odd number
std::vector<int>::const_iterator iter

= std::find_if(v.begin(), v.end(), odd());

if(iter != v.end()) {

std::cout << "The first odd number ("

<< *iter

<< ") was found at position "

<< (iter - v.begin())

<< "." << std::endl;

}

else std::cout << "No odd number found." << std::endl;

}

Alternatively bind2nd() can be used, if the header <functional> is included:

#include<functional> // don’t forget
// look for odd number
std::vector<int>::const_iterator iter

= std::find_if(v.begin(), v.end(),

std::bind2nd(std::modulus<int>(),2));

5.3.3 find_end
This algorithm finds a subsequence inside a sequence. Neither this nor the follow-
ing algorithm (find_first_of()) is contained in the original version of the STL
(Stepanov and Lee (1995), Musser and Saini (1996)), but both have been added to
the C++ standard. The prototypes are:

template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1 find_end(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2,

ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>

ForwardIterator1 find_end(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2,

ForwardIterator2 last2,

BinaryPredicate pred);

The interval [first1, last1) is the range to be searched; the interval
[first2, last2) describes the sequence to be sought. The return value is the

NONMUTATING SEQUENCE OPERATIONS 91

last iterator in the search range that points to the beginning of the subsequence. If
the subsequence is not found, the algorithm returns last1. If the returned iterator is
named i,
*(i+n) == *(first2+n)

or
pred(*(i+n), *(first2+n)) == true

according to the prototype, apply for all n in the range 0 to (last2-first2). The
complexity is O(N2 ∗ (N1 − N2)), when N1 and N2 are the lengths of the search
range and the subsequence to be sought. Example:

// k5/find_end.cpp: find a subsequence within a sequence
#include<algorithm>

#include<vector>

#include<iostream>

using namespace std;

int main() {

vector<int> v(8);

vector<int> subsequence1(3);

// initialize vector and subsquences
for(size_t i = 0; i < v.size(); ++i)

v[i] = 2*i; // all even

subsequence1[0] = 4;

subsequence1[1] = 6;

subsequence1[2] = 8;

cout << "vector ";

for(size_t i = 0; i < v.size(); ++i)

cout << v[i] << " ";

cout << endl;

// search for subsequence 1
cout << "subsequence1 (";

for(size_t i = 0; i < subsequence1.size(); ++i)

cout << subsequence1[i] << " ";

cout << ")" << endl;

vector<int>::const_iterator iter

= find_end(v.begin(), v.end(),

subsequence1.begin(), subsequence1.end());

if(iter != v.end()) {

cout << "is part of the vector. The first occurence"

" starts at position "

<< (iter - v.begin())

<< "." << endl;

}

92 STANDARD ALGORITHMS

else cout << "is not part of the vector." << endl;

}

5.3.4 find_first_of
The algorithm finds an element in a subsequence within a sequence. The prototypes
are:

template<class ForwardIterator1, class ForwardIterator2>

ForwardIterator1 find_first_of(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2,

ForwardIterator2 last2);

template<class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>

ForwardIterator1 find_first_of(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2,

ForwardIterator2 last2,

BinaryPredicate pred);

The interval [first1, last1) is the search range; the interval [first2,
last2) describes a range of elements to be sought. The return value is the first
iterator i in the search range which points to an element which is also present in the
second range. Assuming that an iterator j points to the element in the second range,
then
*i == *j

or
pred(*i, *j) == true

apply, according to the prototype. If no element of the first range is found in the
second range, the algorithm returns last1. The complexity is O(N1 ∗ N2), when
N1 and N2 are the range lengths. Example:

// excerpt from k5/find_first_of.cpp
// search for element, which is also in subsequence
vector<int>::const_iterator iter

= find_first_of(v.begin(), v.end(),

subsequence.begin(), subsequence.end());

if(iter != v.end()) {

cout << "Yes. Element " << *iter

<< " is present in both ranges. Its first "

"occurrence in the vector is position "

<< (iter - v.begin())

<< "." << endl;

}

else cout << "No match." << endl;

NONMUTATING SEQUENCE OPERATIONS 93

5.3.5 adjacent_find
Two identical, directly adjacent elements are found with adjacent_find(). Here
too, two overloaded variations exist – one without and one with binary predicate.
The first variation compares the elements by means of the equality operator ==, the
second one uses the predicate. The prototypes are:

template <class ForwardIterator>

ForwardIterator adjacent_find(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>

ForwardIterator adjacent_find(ForwardIterator first,

ForwardIterator last,

BinaryPredicate binary_pred);

The returned iterator points to the first of the two elements, provided that a cor-
responding pair is found. The first example shows how to find two identical adjacent
elements:

// k5/adjacent_find.cpp
#include<algorithm>

#include<vector>

#include<iostream>

#include<showseq.h>

int main() {

std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

v[i] = 2*i; // even
v[5] = 99; // two identical adjacent elements
v[6] = 99;

br_stl::showSequence(v);

// find identical neighbors
std::vector<int>::const_iterator iter

= std::adjacent_find(v.begin(), v.end());

if(iter != v.end()) {

std::cout << "The first identical adjacent numbers ("

<< *iter

<< ") were found at position "

<< (iter - v.begin())

<< "." << std::endl;

}

else

std::cout << "No identical adjacent numbers found."

<< std::endl;

}

94 STANDARD ALGORITHMS

The second example shows the application of a completely different – in the
end arbitrary – criterion. A sequence is checked to see whether the second of two
adjacent elements is twice as large as the first one:

// k5/adjacent_find_1.find.cpp
#include<algorithm>

#include<vector>

#include<iostream>

#include<showseq.h>

class doubled {

public:

bool operator()(int a, int b) { return (b == 2*a);}

};

int main() {

std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

v[i] = i*i;

v[6] = 2 * v[5]; // twice as large successor
br_stl::showSequence(v);

// search for twice as large successor
std::vector<int>::const_iterator iter

= std::adjacent_find(v.begin(), v.end(), doubled());

if(iter != v.end()) {

std::cout << "The first number ("

<< *iter

<< ") with a twice as large successor"

" was found at position "

<< (iter - v.begin())

<< "." << std::endl;

}

else

std::cout << "No number with twice as large "

"successor found." << std::endl;

}

The technique of employing a function object reveals itself as very useful and
powerful. In operator()(), arbitrarily complex conditions can be formulated
without having to change the main() program.

5.3.6 count and count_if
These algorithms counts the number of the elements which are equal to a given value
value or the number of the elements which satisfy a given predicate. The prototypes
are

NONMUTATING SEQUENCE OPERATIONS 95

template <class InputIterator, class T>

iterator_traits<InputIterator>::difference_type

count(InputIterator first, InputIterator last,

const T& value);

template <class InputIterator, class Predicate>

iterator_traits<InputIterator>::difference_type

count_if(InputIterator first, InputIterator last,

Predicate pred);

The program fragment shows the application, with reference to the vector v of
the previous examples.

std::cout << "There exist "

<< std::count(v.begin(), v.end(), 99)

<< " elements with the value 99." << std::endl;

At its construction, the function object of type myComparison receives the value
with which the comparison is to be made. Here, count_if() enters into the action:

// #include... and so on

class myComparison {

public:

myComparison(int i): withwhat(i) {}

bool operator()(int x) { return x == withwhat;}

private:

int withwhat;

};

int main() {

std::vector<int> v(100);

// initialize v here (omitted)
std::cout << "There exist "

<< count_if(v.begin(), v.end(), myComparison(99))

<< " elements with the value 99."

<< std::endl;

}

An alternative is

std::count_if(v.begin(), v.end(),

std::bind2nd(std::equal_to<int>(),99));

5.3.7 mismatch
mismatch() checks two containers for matching contents, with one variation using
a binary predicate. The prototypes are:

96 STANDARD ALGORITHMS

template <class InputIterator1, class InputIterator2>

pair<InputIterator1, InputIterator2> mismatch(

InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2);

template <class InputIterator1, class InputIterator2,

class BinaryPredicate>

pair<InputIterator1, InputIterator2> mismatch(

InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

BinaryPredicate binary_pred);

The algorithm returns a pair of iterators which point to the first position of mis-
match in the corresponding containers. If both containers match, the first iterator of
the returned pair is equal to last1. The following example shows that the containers
do not have to be of the same type: here, a vector and a set are compared. Because
of the sorted storage in the set, the vector must be sorted as well:

// k5/mismatch.cpp
#include<algorithm>

#include<vector>

#include<set>

#include<showseq.h>

int main() {

std::vector<int> v(8);

for(size_t i = 0; i < v.size(); ++i)

v[i] = 2*i; // sorted sequence

std::set<int> s(v.begin(), v.end()); // initialize set with v
v[3] = 7; // insert mismatch
br_stl::showSequence(v); // display
br_stl::showSequence(s);

// comparison for match with iterator pair ’where’
std::pair<std::vector<int>::iterator,

std::set<int>::iterator>

where = std::mismatch(v.begin(), v.end(), s.begin());

if(where.first == v.end())

std::cout << "Match found." << std::endl;

else

std::cout << "The first mismatch ("

<< *where.first << " != "

<< *where.second

<< ") was found at position "

NONMUTATING SEQUENCE OPERATIONS 97

<< (where.first - v.begin())

<< "." << std::endl;

}

In the set, no index-like position is defined; therefore an expression of the kind
(where.second - s.begin()) is invalid. It is true that where.second points
to the position of the mismatch in s, but the arithmetic is not permitted. If you
really need the relative number with reference to the first element in s, you can
use distance().

The second example checks character sequences, with the simple mismatch()
finding the first mismatch, whereas mismatch() with binary predicate ignores mis-
matches in upper case and lower case spelling.

// k5/mismat_b.cpp
#include<algorithm>

#include<vector>

#include<iostream>

#include<cctype>

class myCharCompare { // tolerates upper/lower case spelling
public:

bool operator()(char x, char y) {

return tolower(x) == tolower(y);

}

};

int main() {

char Text1[] = "Algorithms and Data Structures";

// text with two errors:
char Text2[] = "Algorithms and data Struktures";

// copy texts into vector (-1 because of null byte)
std::vector<char> v1(Text1, Text1 + sizeof(Text1)-1);

std::vector<char> v2(Text2, Text2 + sizeof(Text2)-1);

// compare with iterator pair ’where’
std::pair<std::vector<char>::iterator,

std::vector<char>::iterator>

where = std::mismatch(v1.begin(),

v1.end(), v2.begin());

if(where.first != v1.end()) {

std::cout << Text1 << std::endl

<< Text2 << std::endl;

std::cout.width(1 + where.first - v1.begin());

std::cout << "^ first mismatch" << std::endl;

}

// compare with predicate
where = std::mismatch(v1.begin(), v1.end(), v2.begin(),

myCharCompare());

98 STANDARD ALGORITHMS

if(where.first != v1.end()) {

std::cout << Text1 << std::endl

<< Text2 << std::endl;

std::cout.width(1 + where.first - v1.begin());

std::cout << "^ first mismatch at\n"

"tolerance of upper/lower case spelling"

<< std::endl;

}

}

The specification of output width in connection with the ^ character is used to
mark the position visually on screen. A fixed font is assumed.

5.3.8 equal
equal() checks two containers for matching contents, with one variation using a
binary predicate. Unlike mismatch(), however, no position is indicated. As can be
seen from the return type bool, it checks only whether the containers match or not.
The prototypes are:

template <class InputIterator1, class InputIterator2>

bool equal(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2);

template <class InputIterator1, class InputIterator2,

class BinaryPredicate>

bool equal(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

BinaryPredicate binary_pred);

When you compare equal() with mismatch(), you will see a strong simi-
larity: depending on whether mismatch() yields a match or not, equal() must
return the value true or false (see Exercises 5.1 and 5.2). An application within
the program of the previous example might look as follows:

if(std::equal(v1.begin(), v1.end(), v2.begin()))

std::cout << "equal character strings" << std::endl;

else

std::cout << "unequal character strings" << std::endl;

// remember the negation which saves some writing effort in the program.
if(!std::equal(v1.begin(), v1.end(), v2.begin(),

myCharCompare()))

std::cout << "un";

std::cout << "equal character strings at "

"tolerance of upper/lower case spelling "

<< std::endl;

NONMUTATING SEQUENCE OPERATIONS 99

Exercises

5.1 What would the implementation of equal() look like, if it were to use the
mismatch() algorithm?

5.2 What would the implementation of equal() with a binary predicate look like,
if it were to use mismatch() with a binary predicate?

5.3.9 search
The search() algorithm searches a sequence of size N to see whether a second
sequence of size G is contained in it. In the worst case, the complexity is O(NG);
on average, however, the behavior is better. The return value is an iterator to the
position within the first sequence at which the second sequence starts, provided it is
contained in the first one. Otherwise, an iterator to the last1 position of the first
sequence is returned. The prototypes are:

template <class ForwardIterator1, class ForwardIterator2>

ForwardIterator1 search(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2,

ForwardIterator2 last2);

template <class ForwardIterator1, class ForwardIterator2,

class BinaryPredicate>

ForwardIterator1 search(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2,

ForwardIterator2 last2,

BinaryPredicate binary_pred);

In the example, a sequence of numbers is searched for, inside another sequence
of numbers. The binary predicate compares the absolute values of the numbers,
ignoring the signs.

// k5/search.cpp
#include<algorithm>

#include<vector>

#include<iostream>

#include<cstdlib>

using namespace std;

class AbsIntCompare { // ignore signs
public:

bool operator()(int x, int y) {

return abs(x) == abs(y);

100 STANDARD ALGORITHMS

}

};

int main() {

vector<int> v1(12);

for(size_t i = 0; i < v1.size(); ++i)

v1[i] = i; // 0 1 2 3 4 5 6 7 8 9 10 11

vector<int> v2(4);

for(size_t i = 0; i < v2.size(); ++i)

v2[i] = i + 5; // 5 6 7 8

// search for substructure v2 in v1
vector<int>::const_iterator

where = search(v1.begin(), v1.end(),

v2.begin(), v2.end());

// if the sequence v2 does not begin with 5, but with a number ≥ 10,
// the else branch of the if condition is executed.

if(where != v1.end()) {

cout << " v2 is contained in v1 from position "

<< (where - v1.begin())

<< " onward." << endl;

}

else

cout << " v2 is not contained in v1."

<< endl;

// put negative numbers into v2
for(size_t i = 0; i < v2.size(); ++i)

v2[i] = -(i + 5); // –5 –6 –7 –8

// search for substructure v2 in v1, ignore signs
where = search(v1.begin(), v1.end(),

v2.begin(), v2.end(),

AbsIntCompare());

if(where != v1.end()) {

cout << " v2 is contained in v1 from position "

<< (where - v1.begin())

<< " onward (signs are ignored)."

<< endl;

}

else

cout << " v2 is not contained in v1."

<< endl;

}

Here, with the changed criterion, it is found that v2 is contained in v1.

MUTATING SEQUENCE OPERATIONS 101

5.3.10 search_n
The search_n() algorithm searches a sequence for a sequence of equal values. The
prototypes are:

template <class ForwardIterator, class Size, class T>

ForwardIterator search_n(ForwardIterator first,

ForwardIterator last,

Size count,

const T& value);

template <class ForwardIterator, class Size, class T,

class BinaryPredicate>

ForwardIterator search_n(ForwardIterator first,

ForwardIterator last,

Size count,

const T& value,

BinaryPredicate binary_pred);

The first function returns the iterator to the start of the first sequence with at least
count values that are equal to value. If such a sequence is not found, the function
returns last. The second function does not check for equality but evaluates the
binary predicate. In case of success, binary_pred(X, value) must hold for at
least count consecutive values X.

5.4 Mutating sequence operations
If not specified otherwise, the complexity of all algorithms in this section is O(N),
where N is the number of moved or altered elements of the sequence.

5.4.1 iota
This algorithm is part of several STL implementations, but not of the C++ standard. tip
It is shown here, because it can from time to time be employed in practice.

Iota is the ninth letter of the Greek alphabet (ι). The corresponding English word
‘iota’ means ‘a very small quantity’ or ‘an infinitesimal amount.’ However, the name
has not been chosen for this reason, but is taken from the ι operator of the APL
programming language. As an ‘Index generator,’ the APL instruction ι n supplies
a vector with an ascending sequence of the numbers 1 to n. The function itself is
rather simple, as can be seen from the definition:

// include/iota.h
#ifndef IOTA_H

#define IOTA_H

namespace br_stl {

template <class ForwardIterator, class T>

void iota(ForwardIterator first, ForwardIterator last,

102 STANDARD ALGORITHMS

T value) {

while(first != last)

*first++ = value++;

}

}

#endif

All elements in the interval [first, last) of a sequence are assigned a value,
with the value being increased by one at each iteration. The type T for the value
can also be a pointer type, so that addresses are incremented. iota() is going to be
employed in an example in the next section. In the following text it is assumed that
iota is contained in an extra header <iota.h>.

5.4.2 copy and copy_backward
The copy() algorithm copies the elements of a source range into the destina-
tion range; copying can start at the beginning or at the end of the ranges (with
copy_backward()). If the destination range is not to be overwritten, but the copied
elements are to be inserted, an insert iterator is chosen as the output iterator, as
shown on page 65. Exceptionally, in order to make the functioning clearer, the
complete definitions are shown instead of the prototypes:

template <class InputIterator, class OutputIterator>

OutputIterator copy(InputIterator first,

InputIterator last,

OutputIterator result) {

while (first != last) *result++ = *first++;

return result;

}

template <class BidirectionalIterator1,

class BidirectionalIterator2>

BidirectionalIterator2 copy_backward(

BidirectionalIterator1 first,

BidirectionalIterator1 last,

BidirectionalIterator2 result) {

while (first != last) *--result = *--last;

return result;

}

Here too, as usual in the C++ Standard Library, last does not denote the position
of the last element, but the position after the last element. As Figure 5.1 shows, three
cases must be considered:

1. The ranges are completely separated from each other. The ranges can lie in the
same or in different containers. result points to the beginning of the destination
range. copy() copies the source range starting with *first. The return value is

MUTATING SEQUENCE OPERATIONS 103

source

dest.

2)

result -

first -

last -

source

dest.

3)

first -

last -

result -

source

dest.

1)

result -

first -

last -

Figure 5.1: Copying without and with range overlapping.

result + (last - first), that is, the position after the last element of the
destination range.

2. The ranges overlap in such a way that the destination range begins before the
source range. result points to the beginning of the destination range. copy()
copies the source range beginning with *first. As with the first case, the posi-
tion after the last element of the destination range is returned.

3. The ranges overlap in such a way that the destination range begins somewhere
in the middle of the source range. In order not to destroy the data, copying must
start from the end. result points to the position directly after the end of the
destination range. copy_backward() copies the source range by first copying
*(--last) to the position --result. Here, result - (last - first) is
returned, that is, the position of the last copied element in the destination range.

The behavior of the copying algorithms is undefined when result lies in the
interval [first, last). The application of copy() and copy_backward() is
shown in the following example:

// k5/cpy.cpp
#include<algorithm>

#include<vector>

#include<iterator>

#include<showseq.h>

#include<iota.h>

using namespace std;

104 STANDARD ALGORITHMS

int main() {

vector<int> v1(7), v2(7, 0); // 7 zeros
br_stl::iota(v1.begin(), v1.end(),0); // result see next line
br_stl::showSequence(v1); // 0 1 2 3 4 5 6
br_stl::showSequence(v2); // 0 0 0 0 0 0 0

/*In the copy process from v1 to v2, the beginning of the destination range is
marked by v2.begin(). Copy v1 to v2:

*/

copy(v1.begin(), v1.end(), v2.begin());

br_stl::showSequence(v2); // 0 1 2 3 4 5 6

/*In order to show the variety of the iterator principle, the algorithm copy() is
used with a special iterator. This iterator is defined as an ostream iterator which
can display int numbers on the standard output. The copy() algorithm has no
difficulties with this (in practice, it doesn’t give a hoot!).

*/

// copy v1 to cout, separator *
ostream_iterator<int> Output(cout, "*");

copy(v1.begin(), v1.end(), Output); // 0*1*2*3*4*5*6*
cout << endl;

/*Now, a range inside v1 is copied to a different position which lies inside v1. The
range is chosen such that source and destination ranges overlap. The first four
numbers are copied, so that case (3) of Figure 5.1 applies.

*/

// overlapping ranges:
vector<int>::iterator last = v1.begin();

advance(last, 4); // 4 steps forward
copy_backward(v1.begin(), last, v1.end());

copy(v1.begin(), v1.end(), Output); // 0*1*2*0*1*2*3*
}

5.4.3 copy_if
Algorithm copy_if() copies all elements of a source range into a destination range,
if a certain condition holds.

The algorithm is not part of the C++ Standard Library. The reasons are not
quite clear because many other algorithms do have a variant with a predicate.
Probably the reason is that the same result can be achieved using the algorithmtip
remove_copy_if() from page 114, if the predicate is negated. However, it is also
very simple to write a standard conforming implementation, as can be seen below. In
the example, only values greater than 10 are copied from one container to another.
// k5/copy_if.cpp
#include<iostream>

#include<vector>

MUTATING SEQUENCE OPERATIONS 105

#include<functional>

#include<showseq.h>

#include<iota.h>

template <class Iterator1, class Iterator2, class Predicate>

Iterator2 copy_if(Iterator1 iter, Iterator1 sourceEnd,

Iterator2 destination, Predicate Pred) {

while(iter != sourceEnd) {

if(Pred(*iter))

*destination++ = *iter;

++iter;

}

return destination;

}

int main() {

typedef std::vector<int> Container;

Container V(20);

br_stl::iota(V.begin(), V.end(), 1);

br_stl::showSequence(V);

Container C; // empty container
// insert all elements > 10 :
copy_if(V.begin(), V.end(),

std::back_inserter(C),

std::bind2nd(std::greater<int>(),10));

br_stl::showSequence(C);

}

Iterator destination must be an insert iterator because the destination con-
tainer is initially empty. If the destination container has enough room before the
algorithm starts, C.begin() could be the destination iterator.

5.4.4 swap, iter_swap, and swap_ranges
The swap() algorithm exchanges elements of containers or containers themselves.
It occurs in three variations:

• swap() swaps two individual elements. The two elements can be in the same or
in different containers.

template <class T>

void swap(T& a, T& b);

• iter_swap() takes two iterators and swaps the associated elements. The two
iterators can belong to the same or to different containers.

template <class ForwardIterator1, class ForwardIterator2>

void iter_swap(ForwardIterator1 a, ForwardIterator2 b);

106 STANDARD ALGORITHMS

• swap_ranges() swaps two ranges.

template <class ForwardIterator1, class ForwardIterator2>

ForwardIterator2 swap_ranges(ForwardIterator1 first1,

ForwardIterator1 last1,

ForwardIterator2 first2);

first1 points to the beginning of the first range, last1 to the position after
the last element of the first range. The beginning of the second range is given
by first2. The number of elements to be swapped is given by the size of the
first range. The ranges can lie in the same container, but they must not overlap.
swap_ranges() returns an iterator to the end of the second range.

• swap() is specialized for those container which provide a method swap(), i.e.
deque, list, vector, set, map, multiset, and multimap. These methods are
very fast (O(1)), because only management information is exchanged. swap()
calls a container method, as shown here for the swap function specialized for
vectors:

template<class T, class Allocator>

void swap(vector<T, Allocator>& a,

vector<T, Allocator>& b) {

a.swap(b);

}

The first three variations are employed in the next example where, for simplicity,
all movements take place in the same container – which, in general, is not necessarily
the case. At the end of each swapping action, the result is displayed on standard
output.

// k5/swap.cpp
#include<algorithm>

#include<vector>

#include<showseq.h>

#include<iota.h>

using namespace std;

int main() {

vector<int> v(17);

br_stl::iota(v.begin(), v.end(), 10);

br_stl::showSequence(v);

// 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

cout << "Swap elements v[3] and v[5]:\n";

swap(v[3], v[5]); // swap
br_stl::showSequence(v);

// 10 11 12 15 14 13 16 17 18 19 20 21 22 23 24 25 26

cout << "swap first and last elements"

" via iterator:\n";

MUTATING SEQUENCE OPERATIONS 107

vector<int>::iterator first = v.begin(),

last = v.end();

--last;

iter_swap(first, last); // swap
br_stl::showSequence(v);

// 26 11 12 15 14 13 16 17 18 19 20 21 22 23 24 25 10

int oneThird = v.size()/3;

cout << "swap about the first and last thirds "

<< "(" << oneThird << " Positions):\n";

last = v.begin();

advance(last, oneThird); // end of first third
vector<int>::iterator target = v.end();

advance(target, -oneThird); // beginning of second third

swap_ranges(first, last, target); // swap
br_stl::showSequence(v);

// 22 23 24 25 10 13 16 17 18 19 20 21 26 11 12 15 14
}

5.4.5 transform
When the task is not only to copy something, but also to transform it at the same
time, then transform() is the right algorithm. The transformation can concern only
one element or two elements at a time. Correspondingly, there are two overloaded
versions:

template <class InputIterator, class OutputIterator,

class UnaryOperation>

OutputIterator transform(InputIterator first,

InputIterator last,

OutputIterator result,

UnaryOperation op);

Here, the operation op is applied to each element in the range first to last

exclusive, and the result is copied into the range beginning with result. result
may be identical to first; in this case, the original elements are substituted by the
transformed ones. The return value is an iterator to the position after the end of the
target range.

template <class InputIterator1, class InputIterator2,

class OutputIterator, class BinaryOperation>

OutputIterator transform(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

OutputIterator result,

BinaryOperation bin_op);

108 STANDARD ALGORITHMS

In the second version, two ranges are taken into account. The first is the inter-
val [first1, last1), the second the interval [first2, first2 + last1 -

first1), that is, the second range has exactly the same size as the first. The bin_op
operation takes one element from each of the two ranges and stores their result in
result. result may be identical to first1 or first2; in this case, the original
elements are substituted with the transformed ones. The return value is an iterator to
the position after the end of the target range.

The example shows two vectors of names. The elements of one vector are
changed into upper case letters. The elements of the third vector originate from the
elements of the first two vectors joined by ‘and.’

// k5/transform.cpp
#include<algorithm>

#include<showseq.h>

#include<string>

#include<vector>

// unary operation as function
std::string upper_case(std::string s) {

for(size_t i = 0; i < s.length(); ++i)

if(s[i] >= ’a’ && s[i] <= ’z’)

s[i] -= ’a’-’A’;

return s;

}

class join { // binary operation as functor
public:

std::string operator()(const std::string& a,

const std::string& b) {

return a + " and " + b;

}

};

int main() {

vector<string> Gals(3), Guys(3),

Couples(3); // there must be enough space
Gals[0] = "Annabella";

Gals[1] = "Scheherazade";

Gals[2] = "Xaviera";

Guys[0] = "Bogey";

Guys[1] = "Amadeus";

Guys[2] = "Wladimir";

std::transform(Guys.begin(), Guys.end(),

Guys.begin(), // target == source
upper_case);

MUTATING SEQUENCE OPERATIONS 109

std::transform(Gals.begin(), Gals.end(),

Guys.begin(), Couples.begin(),

join());

br_stl::showSequence(Couples, "\n");

}

Output of the program is:

Annabella and BOGEY
Scheherazade and AMADEUS
Xaviera and WLADIMIR

The example shows different variations:

• The unary transformation upper_case() is implemented as a function, the bi-
nary one as a functor. This also works the other way round.

• The application of upper_case() with the transform() algorithm uses the
same container to store the results, whereas the binary transformation join()

stores the results in a different container Couples.

5.4.6 replace and variants
The replace() algorithm replaces each occurrence of value old_value with
new_value sequentially. Alternatively, a condition-controlled replacement with a
unary predicate is possible with replace_if():

template <class ForwardIterator, class T>

void replace(ForwardIterator first,

ForwardIterator last,

const T& old_value,

const T& new_value);

template <class ForwardIterator, class Predicate, class T>

void replace_if(ForwardIterator first,

ForwardIterator last,

Predicate pred,

const T& new_value);

Now, for the first time, we can see the copying variations of algorithms discussed
in Section 5.1:

template <class InputIterator, class OutputIterator,

class T>

OutputIterator replace_copy(InputIterator first,

InputIterator last,

OutputIterator result,

const T& old_value,

const T& new_value);

110 STANDARD ALGORITHMS

template <class Iterator, class OutputIterator,

class Predicate, class T>

OutputIterator replace_copy_if(Iterator first,

Iterator last,

OutputIterator result,

Predicate pred,

const T& new_value);

The copying variations differ in their names by an added _copy. In the following
example, all four cases are presented because up to now there has not been one
sample program with a copying variation.

// k5/replace.cpp
#include<algorithm>

#include<showseq.h>

#include<string>

#include<vector>

// unary predicate as functor
class Citrusfruit {

public:

bool operator()(const std::string& a) {

return a == "lemon"

|| a == "orange"

|| a == "lime";

}

};

using namespace std;

int main() {

vector<string> Fruitbasket(3), Crate(3);

Fruitbasket[0] = "apple";

Fruitbasket[1] = "orange";

Fruitbasket[2] = "lemon";

br_stl::showSequence(Fruitbasket); // apple orange lemon

cout << "replace: "

"replace apple with quince:\n";

replace(Fruitbasket.begin(), Fruitbasket.end(),

string("apple"), string("quince"));

br_stl::showSequence(Fruitbasket); // quince orange lemon

cout << "replace_if: "

"replace citrus fruits with plums:\n";

replace_if(Fruitbasket.begin(), Fruitbasket.end(),

MUTATING SEQUENCE OPERATIONS 111

Citrusfruit(), string("plum"));

br_stl::showSequence(Fruitbasket); // quince plum plum

cout << "replace_copy: "

"copy and replace the plums "

"with limes:\n";

replace_copy(Fruitbasket.begin(), Fruitbasket.end(),

Crate.begin(), string("plum"), string("lime"));

br_stl::showSequence(Crate); // quince lime lime

cout << "replace_copy_if: copy and replace "

"the citrus fruits with tomatoes:\n";

replace_copy_if(Crate.begin(), Crate.end(),

Fruitbasket.begin(), Citrusfruit(),

string("tomato"));

br_stl::showSequence(Fruitbasket); // quince tomato tomato
}

Since the scheme is always the same, from now on the _copy variations of the
algorithms will be considered only as prototypes, but not as examples.

5.4.7 fill and fill_n
When a sequence is to be completely or partly initialized with the same values, the
fill() or fill_n() algorithms will help:

template <class ForwardIterator, class T>

void fill(ForwardIterator first, ForwardIterator last,

const T& value);

template <class OutputIterator, class Size, class T>

OutputIterator fill_n(OutputIterator first, Size n,

const T& value);

Both are as simple as iota() and easy to apply:

// k5/fill.cpp
#include<algorithm>

#include<vector>

#include<showseq.h>

using namespace std;

int main() {

vector<double> v(8);

// initialize all values with 9.23
fill(v.begin(), v.end(), 9.23);

br_stl::showSequence(v);

112 STANDARD ALGORITHMS

/*fill_n() expects the specification of the number of elements in the sequence
which are to be initialized with a value and returns an iterator to the end of the
range. Here, the first half of the sequence is changed, namely initialized with 1.01:

*/
vector<double>::const_iterator iter =

fill_n(v.begin(), v.size()/2, 1.01);

br_stl::showSequence(v);

cout << "iter is in position = "

<< (iter - v.begin())

<< ", *iter = " << *iter << endl;

}

5.4.8 generate and generate_n
A generator in the generate() algorithm is a function object or a function which is
called without parameters and whose results are assigned one by one to the elements
of the sequence. As with fill(), there is a variation which expects an iterator pair,
and a variation which needs the starting iterator and a number of pieces:

template <class ForwardIterator, class Generator>

void generate(ForwardIterator first, ForwardIterator last,

Generator gen);

template <class OutputIterator, class Size,

class Generator>

OutputIterator generate_n(OutputIterator first, Size n,

Generator gen);

The example shows both variations, with the generator occurring in two versions
as well. The first generator is a function object and generates random numbers, the
second one is a function for generating powers of two.

// include/myrandom.h
#ifndef MYRANDOM_H

#define MYRANDOM_H

#include<cstdlib> // rand() and RAND_MAX

namespace br_stl {

class Random {

public:

Random(int b): range(b) {}

// returns an int-random number between 0 and range -1
int operator()() {

return (int)((double)rand()*range/(RAND_MAX+1.0));

}

private:

MUTATING SEQUENCE OPERATIONS 113

int range;

};

}#endif

The random function object uses the standard function rand() from <cstdlib>

which generates a value between 0 and RAND_MAX which is subsequently normalized
to the required range. For further use, the random number generator is packed into
an include file and stored in the include directory.

// k5/generate.cpp
#include<algorithm> // main program
#include<vector>

#include<showseq.h>

#include<myrandom.h> // (see above)
using namespace std;

int PowerOfTwo() { // double value; begin with 1
static int Value = 1;

return (Value *= 2)/2;

}

int main() {

vector<int> v(12);

br_stl::Random whatAChance(1000);

generate(v.begin(), v.end(), whatAChance);

br_stl::showSequence(v);

// 10 3 335 33 355 217 536 195 700 949 274 444

generate_n(v.begin(), 10, PowerOfTwo); // only 10 out of 12!
br_stl::showSequence(v); // 1 2 4 8 16 32 64 128 256 512 274 444

}

5.4.9 remove and variants
The algorithm removes all elements from a sequence which are equal to a value
value or which satisfy a predicate pred. Here, the prototypes are listed including
the copying variations:

template <class ForwardIterator, class T>

ForwardIterator remove(ForwardIterator first,

ForwardIterator last,

const T& value);

template <class ForwardIterator, class Predicate>

ForwardIterator remove_if(ForwardIterator first,

ForwardIterator last,

Predicate pred);

114 STANDARD ALGORITHMS

template <class InputIterator, class OutputIterator,

class T>

OutputIterator remove_copy(InputIterator first,

InputIterator last,

OutputIterator result,

const T& value);

template <class InputIterator, class OutputIterator,

class Predicate>

OutputIterator remove_copy_if(InputIterator first,

InputIterator last,

OutputIterator result,

Predicate pred);

‘Removing an element’ in practice means that all subsequent elements shift one
position to the left. When only one element is removed, the last element is duplicated,
because a copy of it is assigned to the preceding position. remove() returns an
iterator to the now shortened end of the sequence.

It should be noted that the total length of the sequence does not change! No
rearrangement of the memory space is carried out. The range between the returned
iterator and end() only contains meaningless elements.tip

// k5/remove.cpp
#include<iostream>

#include<algorithm>

#include<vector>

#include<iterator>

#include<string>

#include<cstring>

#include<iota.h>

bool isVowel(char c) {

return std::strchr("aeiouyAEIOUY", c) != 0;

}

using namespace std;

int main() {

vector<char> v(26);

// generate alphabet in lower case letters:
br_stl::iota(v.begin(), v.end(), ’a’);

ostream_iterator<char> Output(cout, "");

copy(v.begin(), v.end(), Output);

cout << endl;

/*Here, the sequence is not displayed by means of showSequence(), because not
all values between begin() and end() are to be shown, but only the significant
ones (iterator last).

*/

MUTATING SEQUENCE OPERATIONS 115

cout << "remove ’t’: ";

vector<char>::iterator last =

remove(v.begin(), v.end(), ’t’);

// last = new end after shifting
// v.end() remains unchanged
copy(v.begin(), last, Output);

// abcdefghijklmnopqrsuvwxyz (t is missing)
cout << endl;

last = remove_if(v.begin(), last, isVowel);

cout << "only consonants left: ";

copy(v.begin(), last, Output);

// bcdfghjklmnpqrsvwxz
cout << endl;

cout << "complete sequence up to end() with "

" meaningless rest elements: ";

copy(v.begin(), v.end(), Output);

// bcdfghjklmnpqrsvwxzvwxyzz
cout << endl;

}

5.4.10 unique
The unique() algorithm deletes identical consecutive elements except one and is
already known as the member function of containers (page 55). In addition, it is
provided as a function with an additional copying variation:

template <class ForwardIterator>

ForwardIterator unique(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class BinaryPredicate>

ForwardIterator unique(ForwardIterator first,

ForwardIterator last,

BinaryPredicate binary_pred);

template <class InputIterator, class OutputIterator>

OutputIterator unique_copy(InputIterator first,

InputIterator last,

OutputIterator result);

template <class InputIterator, class OutputIterator,

class BinaryPredicate>

OutputIterator unique_copy(InputIterator first,

116 STANDARD ALGORITHMS

InputIterator last,

OutputIterator result,

BinaryPredicate binary_pred);

A simple example shows the first variant. As with remove(), shortening the
sequence through deletion of the identical adjacent elements does not affect the to-
tal length of the sequence. Therefore, here too an iterator to the logical end of the
sequence is returned, which is different from the physical end given by end().

// k5/unique.cpp
#include<iostream>

#include<algorithm>

#include<vector>

#include<iterator>

using namespace std;

int main() {

vector<int> v(20);

// sequence with identical adjacent elements
for(int i = 0; i < v.size(); ++i)

v[i] = i/3;

ostream_iterator<int> Output(cout, " ");

copy(v.begin(), v.end(), Output);

// 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6
cout << endl;

vector<int>::iterator last =

unique(v.begin(), v.end());

copy(v.begin(), last, Output); // 0 1 2 3 4 5 6
}

The superfluous elements at last and behind can be removed with
v.erase(last, v.end()).

5.4.11 reverse
reverse() reverses the order of elements in a sequence: the first shall be last – and
vice versa. Since the first element is swapped with the last, the second with the last
but one, and so on, a bidirectional iterator is required which can process the sequence
starting with the end.

template <class BidirectionalIterator>

void reverse(BidirectionalIterator first,

BidirectionalIterator last);

template <class BidirectionalIterator, class OutputIterator>

OutputIterator reverse_copy(BidirectionalIterator first,

MUTATING SEQUENCE OPERATIONS 117

BidirectionalIterator last,

OutputIterator result);

The example reverses a character sequence which represents a nonperfect palin-
drome and a sequence of numbers.

// k5/reverse.cpp
#include<algorithm>

#include<showseq.h>

#include<vector>

#include<iota.h>

using namespace std;

int main() {

char s[] = "Madam";

vector<char> vc(s, s + sizeof(s)-1); // –1 because of null byte
br_stl::showSequence(vc); // Madam

reverse(vc.begin(), vc.end());

br_stl::showSequence(vc); // madaM

vector<int> vi(10);

br_stl::iota(vi.begin(), vi.end(), 10);

br_stl::showSequence(vi); // 10 11 12 13 14 15 16 17 18 19

reverse(vi.begin(), vi.end());

br_stl::showSequence(vi); // 19 18 17 16 15 14 13 12 11 10
}

5.4.12 rotate
This algorithm shifts the elements of a sequence to the left in such a way that those
that fall out at the beginning are inserted back at the end.

template <class ForwardIterator>

void rotate(ForwardIterator first,

ForwardIterator middle,

ForwardIterator last);

template <class ForwardIterator, class OutputIterator>

OutputIterator rotate_copy(ForwardIterator first,

ForwardIterator middle,

ForwardIterator last,

OutputIterator result);

The reference document Stepanov and Lee (1995) states in an ‘immediately ob-
vious’ way, that for each non-negative integer i < last - first, an element
is moved from position (first + i) into position (first + (i + (last -

118 STANDARD ALGORITHMS

middle)) % (last - first)). In other words: first and last as usual speci-
fy the range in which the rotation is to take place. The middle iterator points to the
element which is to be located at the beginning of the sequence, after the rotation.

The example shows a series of rotations by one element each and a series of
rotations by two positions each.

// k5/rotate.cpp
#include<showseq.h>

#include<algorithm>

#include<vector>

#include<iota.h>

using namespace std;

int main() {

vector<int> v(10);

br_stl::iota(v.begin(), v.end(), 0);

for(size_t shift = 1; shift < 3; ++shift) {

cout << "Rotation by " << shift << endl;

for(int i = 0; i < v.size()/shift; ++i) {

br_stl::showSequence(v);

rotate(v.begin(), v.begin() + shift, v.end());

}

}

}

The program displays:

Rotation by 1
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 1
...
9 0 1 2 3 4 5 6 7 8

Rotation by 2
0 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 0 1
4 5 6 7 8 9 0 1 2 3
...
8 9 0 1 2 3 4 5 6 7

Exercise

5.3 Write an algorithm

template <class ForwardIterator, class Distance>

void rotate_steps(ForwardIterator first,

MUTATING SEQUENCE OPERATIONS 119

ForwardIterator last,

Distance steps);

making use of rotate() which, apart from the iterators for the range, expects the
number of rotations steps. A negative value of steps will rotate the sequence by
steps positions to the left, a positive value to the right. The value of steps can be
greater than the length of the sequence. A possible application could be:

vector<int> v(10);

br_stl::iota(v.begin(), v.end(), 0);

br_stl::showSequence(v);

cout << "Rotation by -11 (left)" << endl;

rotate_steps(v.begin(), v.end(), -11);

br_stl::showSequence(v);

cout << "Rotation by +1 (right)" << endl;

rotate_steps(v.begin(), v.end(), 1);

br_stl::showSequence(v);

The result would be a sequence shifted by 1 (= 11 modulo 10) to the left, cancelled
by the subsequent shift to the right.

5.4.13 random_shuffle
This algorithm is used for random shuffling of the order of elements in a sequence
that provides random access iterators, for example vector or deque. It exists in two
variations:

template <class RandomAccessIterator>

void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator,

class RandomNumberGenerator>

void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last,

RandomNumberGenerator& rand);

The shuffling of the order will be uniformly distributed; this obviously depends
on the random number generator used. The first variation uses an internal random
number function, that is, not one specified in ISO/IEC (1998).

It is expected that the random number generator or the random function will take
a positive argument n of the distance type of the random access iterator used and
return a value between 0 and (n−1).

For a change, a second random number generator named RAND is specified in
the example, which has the advantages of being very simple and independent from

120 STANDARD ALGORITHMS

system functions. The disadvantage is its short period. But in many cases, this is
irrelevant.

// include/rand.h
#ifndef RAND_H

#define RAND_H

namespace br_stl {

class RAND {

public:

RAND() : r(1) {}

int operator()(int X) {

// returns an int pseudo random number between 0 and X–1
// period: 2048

r = (125 * r) % 8192;

return int(double(r)/8192.0*X);

}

private:

long int r;

};

}

#endif

This simple random number generator may be used more often by including
rand.h via #include. The two random number generators presented up to now dif-
fer not only in their algorithms, but also in their application:

• RAND is used when the call needs as function object an argument X. A value be-
tween 0 and (X – 1) is returned. The construction of a RAND object does not require
parameters.

• Random (see page 112) does not need a parameter at all. However, during con-
struction of a Random object, a number X must be specified which defines the
range of possible random numbers (0 to X – 1).

Depending on the purpose, one or the other variation may be chosen. More so-
phisticated random number generators can be found in the literature (for example
Knuth (1994)). For the examples in this book, the two variations above are suffi-
cient.

// k5/rshuffle.cpp
// Example for random_shuffle()
#include<algorithm>

#include<vector>

#include<showseq.h>

#include<iota.h>

#include<rand.h>

using namespace std;

MUTATING SEQUENCE OPERATIONS 121

int main() {

vector<int> v(12);

br_stl::iota(v.begin(), v.end(), 0); // 0 1 2 3 4 5 6 7 8 9 10 11

br_stl::RAND aRAND;

random_shuffle(v.begin(), v.end(), aRAND);

br_stl::showSequence(v); // 1 5 9 8 3 11 2 0 10 6 7 4

// use of the system-internal random number generator
random_shuffle(v.begin(), v.end());

br_stl::showSequence(v); // 5 4 6 8 7 2 1 3 10 9 11 0
}

5.4.14 partition
A sequence can be split with partition() into two ranges such that all elements
that satisfy a given criterion pred lie before all those that do not. The return value
is an iterator which points to the beginning of the second range. All elements lying
before this iterator satisfy the predicate. A typical application of such a partition can
be found in the well-known quicksort algorithm.

The second variation, stable_partition(), guarantees in addition that the
relative order of the elements within one range is maintained. From a function point
of view, this second variation means that the first variation is normally not needed
at all. With limited memory, however, the second variation takes slightly longer to
run (O(N log N) instead of O(N), N = last − first), so the STL provides both
variations. The prototypes are:

template <class BidirectionalIterator, class Predicate>

BidirectionalIterator partition(BidirectionalIterator first,

BidirectionalIterator last,

Predicate pred);

template <class ForwardIterator, class Predicate>

ForwardIterator stable_partition(ForwardIterator first,

ForwardIterator last,

Predicate pred);

In the example, a randomly ordered sequence is partitioned into positive and
negative numbers. Both simple and stable partitions are shown:

// k5/partition.cpp
#include<algorithm>

#include<vector>

#include<functional>

#include<showseq.h>

#include<iota.h>

#include<rand.h> // see page 120
using namespace std;

122 STANDARD ALGORITHMS

int main() {

vector<int> v(12);

br_stl::iota(v.begin(), v.end(), -6);

br_stl::RAND aRAND;

random_shuffle(v.begin(), v.end(), aRAND);

vector<int> unstable = v,

stable = v;

partition(unstable.begin(), unstable.end(),

bind2nd(less<int>(),0));

stable_partition(stable.begin(), stable.end(),

bind2nd(less<int>(),0));

cout << "Partition into negative and positive elements";

cout << endl << "sequence :";

br_stl::showSequence(v); // –5 –1 3 2 –3 5 –4 –6 4 0 1 –2

cout << "stable partition :";

br_stl::showSequence(stable); // –5 –1 –3 –4 –6 –2 3 2 5 4 0 1

cout << "unstable partition :";

// the negative elements are no longer
// in their original order
br_stl::showSequence(unstable); // –5 –1 –2 –6 –3 –4 5 2 4 0 1 3

}

5.5 Sorting, merging, and related
operations
All algorithms described in this section have two variations. One compares elements
with the < operator, the other uses a function object which shall be called comp.
Instead of the function object, a function can be used as well.

The function call with the parameters A and B or the call comp(A, B) of the
function object yields true, if A < B applies with regard to the required ordering
relation.

5.5.1 sort
The sort() algorithm sorts between the iterators first and last. It is suitable
only for containers with random access iterators, such as vector or deque. Ran-
dom access to elements of a list is not possible; therefore, the member function
list::sort() must be employed for lists of type list.

template <class RandomAccessIterator>

void sort(RandomAccessIterator first,

RandomAccessIterator last);

SORTING, MERGING, AND RELATED OPERATIONS 123

template <class RandomAccessIterator, class Compare>

void sort(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

Sorting is not stable, that is, different elements which have the same sorting key
may not have the same position in relation to each other in the sorted sequence that
they had in the unsorted sequence. The average cost is O(N log N) with N = last

- first. No cost estimate is given for the worst case behavior. If the worst case
behavior is relevant, however, it is recommended that you use stable_sort().

By looking into the implementation we can see the basic reason for this: sort()
uses quicksort, which in the worst case has a complexity of O(N2), depending on
the data and the internal partitioning.

template <class RandomAccessIterator>

void stable_sort(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void stable_sort(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

Even in the worst case, the complexity of stable_sort() is O(N log N), if
enough memory is available. Otherwise, the cost is at most O(N(log N)2). Inter-
nally, a merge sort algorithm is used (more about this on page 131), whose time
consumption is on average a constant factor of 1.4 higher than that of quicksort. The
time increase of 40% is compensated by the excellent worst case behavior and the
stability of stable_sort().

The example shows both variations. The random number generator is taken from
the previous example. The use of a function instead of the < operator is also shown;
the ordering criterion in this case is the integer part of a double number. This leads
to elements with the same key but with different values, which are used to show the
non-stability of sort().

// k5/sort.cpp
#include<algorithm>

#include<vector>

#include<showseq.h>

#include<rand.h> // see page 120
using namespace std;

bool integer_less(double x, double y) {

return long(x) < long(y);

}

int main() {

vector<double> v(17);

br_stl::RAND aChance;

124 STANDARD ALGORITHMS

// initialize vector with random values, with
// many values having the same integer part:

for(size_t i = 0; i < v.size(); ++i) {

v[i] = aChance(3) + double(aChance(100)/1000.0);

}

random_shuffle(v.begin(), v.end(), aChance);

vector<double> unstable = v, // auxiliary vectors
stable = v;

cout << "Sequence :\n";

br_stl::showSequence(v);

// 2.022 0.09 0.069 2.097 0.016 1.032 0.086 0.073 2.065 1.081
// 1.042 0.045 0.042 1.098 1.077 1.07 0.03

// sorting with < operator:
stable_sort(stable.begin(), stable.end());

cout << "\n no difference, because double number "

"is used as key\n";

cout << "stable sorting :\n";

br_stl::showSequence(stable);

// 0.016 0.03 0.042 0.045 0.069 0.073 0.086 0.09 1.032 1.042
// 1.07 1.077 1.081 1.098 2.022 2.065 2.097

sort(unstable.begin(), unstable.end());

cout << "unstable sorting :\n";

br_stl::showSequence(unstable);

// 0.016 0.03 0.042 0.045 0.069 0.073 0.086 0.09 1.032 1.042
// 1.07 1.077 1.081 1.098 2.022 2.065 2.097

// sorting with function instead of < operator:
unstable = v;

stable = v;

cout << "\n differences, because only the int part "

"is used as key\n";

stable_sort(stable.begin(), stable.end(),integer_less);

cout << "stable sorting (integer key) :\n";

br_stl::showSequence(stable);

// 0.09 0.069 0.016 0.086 0.073 0.045 0.042 0.03 1.032 1.081
// 1.042 1.098 1.077 1.07 2.022 2.097 2.065

sort(unstable.begin(), unstable.end(), integer_less);

cout << "unstable sorting (integer key):\n";

br_stl::showSequence(unstable);

// 0.03 0.09 0.069 0.016 0.086 0.073 0.045 0.042 1.07 1.032
// 1.077 1.081 1.042 1.098 2.065 2.097 2.022

}

SORTING, MERGING, AND RELATED OPERATIONS 125

partial_sort

Partial sorting brings the M smallest elements to the front, the rest remains unsorted.
The algorithm, however, does not require the number M , but an iterator middle to
the corresponding position, so that M = middle - first applies. The prototypes
are:

template <class RandomAccessIterator>

void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void partial_sort(RandomAccessIterator first,

RandomAccessIterator middle,

RandomAccessIterator last,

Compare comp);

The complexity is approximately O(N log M). The program excerpt for a vector
v shows the partial sorting. In the result, all elements in the first half are smaller than
those in the second half. Furthermore, in the first half the elements are sorted, in the
second half they are not.

br_stl::showSequence(v);

partial_sort(v.begin(), v.begin()+v.size()/2, v.end());

cout << "half sorted:\n";

br_stl::showSequence(v);

Both variations exist in a copying version, where the iterators result_first
and result_last refer to the target container. The number of sorted elements re-
sults from the smaller of the two differences result_last - result_first and
last - first.

template <class InputIterator, class RandomAccessIterator>

RandomAccessIterator partial_sort_copy(

InputIterator first,

InputIterator last,

RandomAccessIterator result_first,

RandomAccessIterator result_last);

template <class InputIterator, class RandomAccessIterator,

class Compare>

RandomAccessIterator partial_sort_copy(

InputIterator first,

InputIterator last,

RandomAccessIterator result_first,

RandomAccessIterator result_last,

Compare comp);

126 STANDARD ALGORITHMS

The returned random access iterator points to the end of the described range, that
is, to result_last or result_first + (last - first), whichever value is
smaller.

Exercise

5.4 Complete the sample program from page 123 with instructions that compare
the vectors stable[] and unstable[] and display all element pairs of v[] or
stable[] for which the stability criterion was violated.

5.5.2 nth_element
The nth largest or nth smallest element of a sequence of random access iterators can
be found by means of nth_element().

template <class RandomAccessIterator>

void nth_element(RandomAccessIterator first,

RandomAccessIterator nth,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void nth_element(RandomAccessIterator first,

RandomAccessIterator nth,

RandomAccessIterator last,

Compare comp);

The iterator nth is set to the required position, for example, the beginning of the
container. After a call of nth_element(), the smallest element has been placed in
this position. Thus, the order of elements in the container is changed. If before thetip
call nth points, for example, to the position v.begin() + 6, then, after the call, this
position contains the seventh smallest element. After the call of the algorithm, only
elements that are smaller than or equal to (*nth) and all elements to the right of it
stand to the left of nth.

The average time of the algorithm is linear (O(N)). In the present implemen-
tation, the time is O(N2) in the worst but rare case when a partition mechanism
similar to quicksort is used.

// k5/nth.cpp Example for nth_element
#include<algorithm>

#include<deque>

#include<showseq.h>

#include<myrandom.h>

#include<functional> // greater<>

using namespace std;

SORTING, MERGING, AND RELATED OPERATIONS 127

int main() {

deque<int> d(15);

generate(d.begin(), d.end(), br_stl::Random(1000));

br_stl::showSequence(d);

// 840 394 783 798 911 197 335 768 277 553 477 628 364 513 952

deque<int>::iterator nth = d.begin();

nth_element(d.begin(), nth, d.end());

cout << "smallest element:"

<< (*nth) // 197
<< endl;

/*The standard comparison object greater causes the sequence to be reversed. In
this case, the greatest element is at the first position:

*/
// here still is nth == d.begin().
nth_element(d.begin(), nth, d.end(), greater<int>());

cout << "greatest element :"

<< (*nth) // 952
<< endl;

/*With the < operator, the greatest element is at the end:
*/
nth = d.end();

--nth; // now points to the last element
nth_element(d.begin(), nth, d.end());

cout << "greatest element :"

<< (*nth) // 952
<< endl;

// assumption for median value: d.size() is odd
nth = d.begin() + d.size()/2;

nth_element(d.begin(), nth, d.end());

cout << "Median value :"

<< (*nth) // 553
<< endl;

}

5.5.3 Binary search
All algorithms in this section are variations of a binary search. The way binary search
functions was briefly explained on page 17. When it is possible to access a sorted
sequence of n elements randomly with a random access iterator, a binary search is
very fast. A maximum of 1 + log2 n accesses are needed to find the element or to
determine that it does not exist.

If random access is not possible, for example in a list where you have to travel

128 STANDARD ALGORITHMS

from one element to the other in order to find a given one, access time is of the order
O(n).

The STL provides four algorithms used in connection with searching and insert-
ing in sorted sequences, which are very similar to each other:

binary_search

template <class ForwardIterator, class T>

bool binary_search(ForwardIterator first,

ForwardIterator last,

const T& value);

template <class ForwardIterator, class T, class Compare>

bool binary_search(ForwardIterator first,

ForwardIterator last,

const T& value,

Compare comp);

This is the binary search proper. Here and in the following three algorithms (or six,
when you include the Compare variations), the forward iterator can be substituted
with a random access iterator, provided the container allows it. The function returns
true if the value is found.

Only the < operator is used, evaluating, in the first variation, the (!(*i

< value) && !(value < *i)) relation (compare with operator==() on
page 21). i is an iterator in the range [first, last). In the second variation
(!comp(*i, value) && !comp(value, *i)) is evaluated accordingly. An
example is shown after the next three algorithms.

lower_bound

This algorithm finds the first position where a value value can be inserted without
violating the ordering. The returned iterator, let us call it i, points to this position,
so that insertion with insert(i, value) is possible without any further search
processes. For all iterators j in the range [first, i) it holds that *j < value or
comp(*j, value) == true. The prototypes are:

template <class ForwardIterator, class T>

ForwardIterator lower_bound(ForwardIterator first,

ForwardIterator last,

const T& value);

template <class ForwardIterator, class T, class Compare>

ForwardIterator lower_bound(ForwardIterator first,

ForwardIterator last,

const T& value,

Compare comp);

SORTING, MERGING, AND RELATED OPERATIONS 129

upper_bound
This algorithm finds the last position where a value value can be inserted without
violating the ordering. The returned iterator i points to this position, so that rapid
insertion is possible with insert(i, value). The prototypes are:

template <class ForwardIterator, class T>

ForwardIterator upper_bound(ForwardIterator first,

ForwardIterator last,

const T& value);

template <class ForwardIterator, class T, class Compare>

ForwardIterator upper_bound(ForwardIterator first,

ForwardIterator last,

const T& value,

Compare comp);

equal_range
This algorithm determines the largest subrange within which a value value can be
inserted at an arbitrary position without violating the ordering. Thus, with regard to
ordering, this range contains identical values. The elements p.first and p.second
of the returned iterator pair, here p, limit the range. For each iterator k which sat-
isfies the condition p.first ≤ k < p.second, rapid insertion is possible with
insert(k, value). The prototypes are:

template <class ForwardIterator, class T>

pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,

ForwardIterator last,

const T& value);

template <class ForwardIterator, class T, class Compare>

pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first, ForwardIterator last,

const T& value, Compare comp);

The algorithms described above are now shown with the aid of a sample program.
Because of its similarity with lower_bound(), upper_bound() is not included.
You must ensure that the container is sorted, since all algorithms in this section make
this assumption.

// k5/binarysearch.cpp
// Example for binary_search and related algorithms
#include<algorithm>

#include<list>

#include<string>

#include<showseq.h>

using namespace std;

130 STANDARD ALGORITHMS

int main() {

list<string> Places;

Places.push_front("Bremen");

Places.push_front("Paris");

Places.push_front("Milan");

Places.push_front("Hamburg");

Places.sort(); // important precondition!
br_stl::showSequence(Places);

string City;

cout << "Search/insert which town? ";

cin >> City;

if(binary_search(Places.begin(), Places.end(), City))

cout << City << " exists\n";

else

cout << City << " does not yet exist\n";

// insertion at the correct position
cout << City << " is inserted:\n";

list<string>::iterator i =

lower_bound(Places.begin(), Places.end(), City);

Places.insert(i, City);

br_stl::showSequence(Places);

// range of identical values
pair<list<string>::const_iterator,

list<string>::const_iterator>

p = equal_range(Places.begin(), Places.end(), City);

// The two iterators of the pair p limit the range in which City occurs:
list<string>::difference_type n =

distance(p.first, p.second);

cout << City << " is contained " << n

<< " times in the list\n";

}

5.5.4 Merging
Merging is a method for combining two sorted sequences into one. Step by step,
the first elements of both sequences are compared, and the smaller (or the greater,
depending on the ordering criterion) element is placed in the output sequence. The
prototypes are:

template <class InputIterator1, class InputIterator2,

class OutputIterator>

OutputIterator merge(InputIterator1 first1,

InputIterator1 last1,

SORTING, MERGING, AND RELATED OPERATIONS 131

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1, class InputIterator2,

class OutputIterator, class Compare>

OutputIterator merge(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

Compare comp);

merge() assumes an existing output sequence. When one of the two input
sequences is exhausted, the remainder of the other one is copied into the output
sequence. A brief example will illustrate this:

// k5/merge0.cpp
#include<algorithm>

#include<showseq.h>

#include<vector>

#include<iota.h>

using namespace std;

int main() {

vector<int> v1(6); // sequence 1
br_stl::iota(v1.begin(), v1.end(), 0); // initialize
br_stl::showSequence(v1); // display

vector<int> v2(10); // sequence 2
br_stl::iota(v2.begin(), v2.end(), 0); // initialize
br_stl::showSequence(v2); // display

vector<int> result(v1.size()+v2.size()); // sequence 3

merge(v1.begin(), v1.end(), // merge
v2.begin(), v2.end(),

result.begin());

br_stl::showSequence(result); // display
}

The result of the program is

0 1 2 3 4 5 (v1)
0 1 2 3 4 5 6 7 8 9 (v2)
0 0 1 1 2 2 3 3 4 4 5 5 6 7 8 9 (result)

Thanks to its structure, merging allows very fast sorting with a complexity of
O(N log N) following the recursive scheme:

132 STANDARD ALGORITHMS

1. Split list into two halves.

2. If the halves have more than one element, sort both halves with this procedure
(recursion).

3. Merge both halves into result list.

Obviously, a nonrecursive variation is possible. Sorting is stable. The disadvantage
is the additional storage space for the result. For comparison with the above scheme,
the merge sort algorithm is now formulated with the means provided by the STL:

// k5/mergesort_vec.cpp Simple example for mergesort()
#include<algorithm>

#include<showseq.h>

#include<vector>

#include<myrandom.h>

template<class ForwardIterator, class OutputIterator>

void mergesort(ForwardIterator first,

ForwardIterator last,

OutputIterator result) {

typename std::iterator_traits<ForwardIterator>::difference_type

n = std::distance(first, last),

Half = n/2;

ForwardIterator Middle = first;

std::advance(Middle, Half);

if(Half > 1) // sort left half, if needed
mergesort(first, Middle, result); // recursion

if(n - Half > 1) { // sort right half, if needed
OutputIterator result2 = result;

std::advance(result2, Half);

mergesort(Middle, last, result2); // recursion
}

// merge both halves and copy back the result
OutputIterator End =

std::merge(first, Middle, Middle, last, result);

std::copy(result, End, first);

}

int main() {

std::vector<int> v(20), buffer(20);

br_stl::Random whatAChance(1000);

std::generate(v.begin(), v.end(), whatAChance);

br_stl::showSequence(v); // random numbers

SORTING, MERGING, AND RELATED OPERATIONS 133

// sort and display
mergesort(v.begin(), v.end(), buffer.begin());

br_stl::showSequence(v); // sorted sequence
}

The last two lines of the function can be combined into one, as can often be
found in the implementation of the STL, although this will make it more difficult to
read:

// Merge both halves and copy back the result
copy(result,

merge(first, Middle, Middle, last, result), first);

The advantage of the algorithm described above over stable_sort() is that
not just containers working with random access iterators can be sorted. Forward
iterators are sufficient, so that v in the above program can also be a list. It can be
filled with push_front(). The only condition is that a list buffer exists which
has at least as many elements as v. Only a few changes are needed in main();
mergesort() remains unchanged:

// Excerpt from k5/mergesort_list.cpp
#include<list>

int main() { // with list instead of vector
std::list<int> v;

for(int i = 0; i < 20; ++i)

v.push_front(0); // create space

br_stl::Random whatAChance(1000);

std::generate(v.begin(), v.end(), whatAChance);

br_stl::showSequence(v); // random numbers

std::list<int> buffer = v;

mergesort(v.begin(), v.end(), buffer.begin());

br_stl::showSequence(v); // sorted sequence
}

The ‘merge sort’ technique is used in a slightly different form when very large
files are to be sorted which do not fit into memory, but mass storage can also be used
(see Chapter 10).

Merging in place
When sequences are to be merged in place, a buffer must be used. The function
inplace_merge() merges sequences in such a way that the result replaces the
input sequences. The prototypes are:

template <class BidirectionalIterator>

void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,

BidirectionalIterator last);

134 STANDARD ALGORITHMS

template <class BidirectionalIterator, class Compare>

void inplace_merge(BidirectionalIterator first,

BidirectionalIterator middle,

BidirectionalIterator last,

Compare comp);

The buffer provided is dependent on the implementation.

// k5/merge1.cpp
#include<algorithm>

#include<showseq.h>

#include<vector>

int main() {

std::vector<int> v(16); // even number
int middle = v.size()/2;

for(int i = 0; i < middle; ++i) {

v[i] = 2*i; // even
v[middle + i] = 2*i + 1; // odd

}

br_stl::showSequence(v);

std::inplace_merge(v.begin(), v.begin() + middle,

v.end());

br_stl::showSequence(v);

}

Here, the first half of a vector is filled with even numbers, the second half with odd
numbers. After the merge, the same vector contains all numbers without explicitly
having to specify a result range:

0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 before
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 after

5.6 Set operations on sorted structures
This section describes the basic set operations, such as union, intersection, and so
on, on sorted structures. In the STL, the set class is based on sorted structures (see
Section 4.4.1). The complexity of the algorithms is O(N1 + N2), where N1 and N2

denote the number of elements of the sets involved.
The algorithms presented here, which use output iterators, are suitable for set

operations only to a limited extent, as explained in Section 5.6.6.

5.6.1 includes
The function includes determines whether each element of a second sorted struc-
ture S2 is contained in the first structure S1. Thus, it checks whether the second

SET OPERATIONS ON SORTED STRUCTURES 135

structure is a subset of the first one. The return value is true, if S2 ⊆ S1 holds,
otherwise it is false. The prototypes are:

template <class InputIterator1, class InputIterator2>

bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

template <class InputIterator1, class InputIterator2,

class Compare>

bool includes(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2,

Compare comp);

The following example initializes some set objects as sorted structures. You
could also take simple vectors, provided they are sorted. Since the example is re-
ferred to again in subsequent sections, it contains more than is strictly needed for
includes().

// Excerpt from k5/set_algorithms.cpp
#include <algorithm>

#include<set>

#include<showseq.h>

using namespace std;

int main () {

int v1[] = {1, 2, 3, 4};

int v2[] = {0, 1, 2, 3, 4, 5, 7, 99, 13};

int v3[] = {-2, 5, 12, 7, 33};

/*initialize sets with the vector contents default comparison object: less<int>()
(implicit automatic sorting). sizeof v/sizeof *v1 yields the number of el-
ements in v.

*/
set<int> s1(v1, v1 + sizeof v1/sizeof *v1);

set<int> s2(v2, v2 + sizeof v2/sizeof *v2);

set<int> s3(v3, v3 + sizeof v3/sizeof *v3);

// s3 see next section

if(includes(s2.begin(), s2.end(),

s1.begin(), s1.end())) {

br_stl::showSequence(s1); // 1 2 3 4
cout << " is a subset of ";

br_stl::showSequence(s2); // 0 1 2 3 4 5 7 99
}

5.6.2 set_union
The function set_union builds a sorted structure which contains all the elements
that occur in at least one of two other sorted structures S1 and S2. Thus, the union
of both structures is formed:

136 STANDARD ALGORITHMS

S = S1 ∪ S2

The precondition is that the receiving structure provides enough space, or that it
is empty and an insert iterator is used as the output iterator (see Section 5.6.6). The
prototypes are:

template <class InputIterator1, class InputIterator2,

class OutputIterator>

OutputIterator set_union(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1, class InputIterator2,

class OutputIterator, class Compare>

OutputIterator set_union(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

Compare comp);

At the beginning, the result set Result (see below) is empty. In the following
example, the output iterator must be an insert iterator. For this purpose, the function
inserter(), which is described on page 66, is included in the parameter list. It
returns an insert iterator. The sole use of Result.begin() as the output iterator
leads to errors. The reasons for this can be found in Section 5.6.6.

set<int> Result; // empty set (s1, s2, s3 as above)

set_union(s1.begin(), s1.end(),

s3.begin(), s3.end(),

inserter(Result, Result.begin()));

br_stl::showSequence(s1); // 1 2 3 4
cout << " united with ";

br_stl::showSequence(s3); // –2 5 7 12 33
cout << " yields ";

br_stl::showSequence(Result); // –2 1 2 3 4 5 7 12 33

5.6.3 set_intersection
The function set_intersection builds a sorted structure which contains all the
elements that occur in both of two other sorted structures S1 and S2. Thus, the inter-
section of both structures is formed:

S = S1 ∩ S2

SET OPERATIONS ON SORTED STRUCTURES 137

The conditions described in Section 5.6.6 apply. The prototypes are:

template <class InputIterator1, class InputIterator2,

class OutputIterator>

OutputIterator set_intersection(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1, class InputIterator2,

class OutputIterator, class Compare>

OutputIterator set_intersection(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

Compare comp);

In order to delete the old results, clear() is called. Otherwise, they would be
displayed again.

Result.clear(); // empty the set

set_intersection(s2.begin(), s2.end(),

s3.begin(), s3.end(),

inserter(Result, Result.begin()));

br_stl::showSequence(s2); // 0 1 2 3 4 5 7 99
cout << " intersected with ";

br_stl::showSequence(s3); // –2 5 7 12 33
cout << " yields ";

br_stl::showSequence(Result); // 5 7

5.6.4 set_difference
The function set_difference builds a sorted structure which contains all the ele-
ments that occur in the first sorted structure S1, but not in the second sorted structure
S2. Thus, the difference S1 − S2 of both structures is formed, which is also written
as S1 \S2. The conditions described in Section 5.6.6 apply. The prototypes are:

template <class InputIterator1, class InputIterator2,

class OutputIterator>

OutputIterator set_difference(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

138 STANDARD ALGORITHMS

template <class InputIterator1, class InputIterator2,

class OutputIterator, class Compare>

OutputIterator set_difference(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

Compare comp);

The example follows the above pattern:

Result.clear();

set_difference(s2.begin(), s2.end(),

s1.begin(), s1.end(),

inserter(Result, Result.begin()));

br_stl::showSequence(s2); // 0 1 2 3 4 5 7 99
cout << " minus ";

br_stl::showSequence(s1); // 1 2 3 4
cout << " yields ";

br_stl::showSequence(Result); // 0 5 7 99

5.6.5 set_symmetric_difference
The function set_symmetric_difference builds a sorted structure which con-
tains all the elements that occur either in the first structure S1 or in a second sorted
structure S2, but not in both. Thus, the symmetric difference of both structures is
formed, which is also called ‘exclusive-or.’ The symmetric difference can be ex-
pressed using the previously introduced operations:

S = (S1 − S2) ∪ (S2 − S1)

or

S = (S1 ∪ S2) − (S2 ∩ S1)

The conditions described in Section 5.6.6 apply. The prototypes are:

template <class InputIterator1, class InputIterator2,

class OutputIterator>

OutputIterator set_symmetric_difference(

InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result);

template <class InputIterator1, class InputIterator2,

class OutputIterator, class Compare>

OutputIterator set_symmetric_difference(

SET OPERATIONS ON SORTED STRUCTURES 139

InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

OutputIterator result,

Compare comp);

The last example of this kind shows the symmetric difference:

Result.clear();

set_symmetric_difference(s2.begin(), s2.end(),

s3.begin(), s3.end(),

inserter(Result, Result.begin()));

br_stl::showSequence(s2); // 0 1 2 3 4 5 7 99
cout << " exclusive or ";

br_stl::showSequence(s3); // –2 5 7 12 33
cout << "yields ";

br_stl::showSequence(Result); // –2 0 1 2 3 4 12 33 99

5.6.6 Conditions and limitations
It was mentioned on page 134 that the algorithms introduced in this section are only
to a certain extent suitable for set operations. The reason is that the output iterator
must refer to a container that already has enough space. When there is insufficient tip
space, using an insert iterator does not always make sense.

Let us consider the following example in which the intersection of two sorted
structures v1 and v2 is to be found and stored in a result vector result. We have
three possible cases:

1. result provides enough space for the result.

2. result lacks space.

3. result lacks space at the beginning, but an insert iterator is used.

// Case 1: everything OK
#include<algorithm>

#include<vector>

#include<showseq.h>

#include<iterator> // for case 3 (back_insert_iterator)
using namespace std;

int main () {

vector<int> v1(4);

vector<int> v2(5);

vector<int> result(4,0);

140 STANDARD ALGORITHMS

v1[0] = 2; v1[1] = 4; v1[2] = 9; v1[3] = 13;

v2[0] = 1; v2[1] = 2; v2[2] = 9; v2[3] = 13; v2[4] = 43;

vector<int>::iterator last =

set_intersection (v1.begin(), v1.end(),

v2.begin(), v2.end(),

result.begin());

br_stl::showSequence(result); // 2 9 13 0

cout << "only the interesting range: \n";

vector<int>::iterator temp = result.begin();

while(temp != last)

cout << *temp++ << ’ ’; // 2 9 13
cout << endl;

The last iterator indicates the position after the last element displayed, so that
the output can be limited to the interesting range.

// Case 2: result1 is too small:
vector<int> result1(1,0);

last = set_intersection (v1.begin(), v1.end(),

v2.begin(), v2.end(),

result1.begin());

Here, the result range is too small, so that the program crashes, or worse, the
memory area following the result vector is overwritten. This mistake cannot betip
picked up by using a vector with index check (see Section 9.1), because only point-
ers are used. Also, the attempt to generate space by using an insert iterator does not
lead to a satisfying result:

// Case 3: result2 is too small, but an insert iterator is used
vector<int> result2(1,0);

back_insert_iterator<vector<int> > where(result2);

set_intersection (v1.begin(), v1.end(),

v2.begin(), v2.end(),

where);

br_stl::showSequence(result2); // 0 2 9 13

The insert iterator appends the elements at the end without considering whether
there is still enough space – it simply does not know any better. Given these three
cases, it is evident that set operations on sorted structures make sense only under
certain conditions:

• Standard containers from Chapter 3: vector, list, deque

– The result container provides enough space. The disadvantage is that after the
end of the result sequence, there are still old values in the container if the space
is more than sufficient.

– The output iterator where must not be identical neither with v1.begin() nor
with v2.begin().

HEAP ALGORITHMS 141

– The result container is empty. In this case, an insert iterator is to be used as thetip
output iterator.

• Associative containers from Section 4.4: set, map

An insert iterator has to be used in any case. The contents of an element must
not be changed directly, that is, via a reference to the element. This would be the
behavior of a non-inserting output iterator, and the ordering within the container
and therefore its integrity would be violated.

Thus, some serious thinking has to be done. If the result container is not empty,
but also does not provide sufficient space, there is no elegant solution. The reason for
this ‘flaw’ lies in the requirement that the algorithms must also be able to work on
simple C-like arrays without being changed. The best thing would be to concentrate
only on the result without caring about available space in containers and iterators to
be employed. Chapter 6 introduces set operations without the above restrictions.

5.7 Heap algorithms
The priority queue described in Section 4.3 is based on a binary heap. Before we
describe the heap algorithms of the STL, let us define the most important features of
a heap:

• The N elements of a heap lie in a continuous array on the positions 0 to N − 1. It
is assumed that random access is possible.

• The kind of arrangement of the elements in the array corresponds to a complete
binary tree in which all levels are occupied by elements. The only possible ex-
ception is the lowest level in which all elements appear on the left-hand side.
Figure 5.2 shows the array representation of a heap H of 14 elements, where the
circled numbers represent the array indices (not the element values). Thus, the el-
ement H[0] is always the root, and each element H[j], (j > 0) has a parent node
H[(j − 1)/2].

±°²¯ ±°²¯ ±°²¯±°²¯ ±°²¯ ±°²¯±°²¯ ±°²¯±°²¯

¡
¡

H
HHHH

@
@@

@

¯̄ ¯̄

±°²¯±°²¯ ±°²¯
±°² ±̄°²¯TT

¡
¡

LL

0

1 2

3 4 5 6

7 8 9 10 11 12 13

Figure 5.2: Array representation of a heap (number = array index).

142 STANDARD ALGORITHMS

• Each element H[j] is assigned a priority which is greater than or equal to the
priority of the child nodes H[2j + 1] and H[2j + 2]. For simplicity, we assume
that here and in the following discussion large numbers mean high priorities. This
could, however, well be the other way round, or completely different criteria might
determine the priority. Figure 5.3 shows examples of element values of a heap:
H[0] equals 99, and so on.

±°²¯ ±°²¯ ±°²¯±°²¯ ±°²¯ ±°²¯±°²¯ ±°²¯±°²¯

¡
¡

HHH
HH

@
@@

@

¯̄ ¯̄

±°²¯±°²¯ ±°²¯
±°² ±̄°²¯TT

¡
¡

LL

99

33 56

21 30 20 48

11 9 25 1 10 17 40

Figure 5.3: Array representation of a heap (number = element value).

Please note that the heap is not completely sorted; we are interested only in the
priority relation between parent nodes and corresponding child nodes.

An array H of N elements is a heap if and only if H[(j−1)/2] ≥ H[j] holds for
1 ≤ j < N . This means automatically that H[0] is the greatest element. A priority
queue simply removes the topmost element of a heap; subsequently, the heap is
restructured, that is, the next greatest element moves to the top. With reference to
Figures 5.2 and 5.3, this would be element number 2 with the value 56.

The STL provides four heap algorithms which can be applied to all containers
that can be accessed with random access iterators:

• push_heap() adds an element to an existing heap.

• pop_heap() removes the element with the highest priority.

• make_heap() arranges all elements in a range in such a way that the range rep-
resents a heap.

• sort_heap() converts a heap into a sorted sequence.

As usual in the STL, these algorithms do not have to know any details about the
containers. They are merely passed two iterators that mark the range to be processed.
less<T> is predefined as the priority criterion, but a different criterion might be re-
quired. Therefore, there is an overloaded variation for each algorithm which allows
passing of a comparison object. To show the internal functioning, possible imple-
mentations are also shown (compare with the STL of your system).

HEAP ALGORITHMS 143

5.7.1 pop_heap
The function pop_heap() removes one element from a heap. The range [first,
last) is to be considered a valid heap. The prototypes are:

template <class RandomAccessIterator>

void pop_heap(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void pop_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

The ‘removal’ consists only of the fact that the value with the highest priority,
which stands at position first is swapped with a value at position (last –1). Sub-
sequently, the range [first, last-1) is converted into a heap. The complexity
of pop_heap() is O(log(last − first)).

// k5/heap.cpp
#include<algorithm>

#include<showseq.h>

#include<vector>

#include<iota.h>

using namespace std;

int main() {

vector<int> v(12); // container for heap
br_stl::iota(v.begin(), v.end(), 0); // enter 0 .. 11
br_stl::showSequence(v); // 0 1 2 3 4 5 6 7 8 9 10 11

// create valid heap
make_heap(v.begin(), v.end()); // see below
br_stl::showSequence(v); // 11 10 6 8 9 5 0 7 3 1 4 2

// display and remove the two numbers
// with the highest priority:
vector<int>::iterator last = v.end();

cout << *v.begin() << endl; // 11
pop_heap(v.begin(), last--);

cout << *v.begin() << endl; // 10
pop_heap(v.begin(), last--);

}

It should be noted that the end of the heap is no longer indicated by v.end(),
but by the iterator last. With regard to the heap properties of v the range between
these two values is undefined.

144 STANDARD ALGORITHMS

pop_heap implementation

A possible implementation for pop_heap() shows how the top element is removed
by reorganizing the heap. We assume that the comp()-functor behaves like the <-
operator, i.e. the biggest number (= high priority) is at the top of the heap. Therefore
big numbers are light and small numbers, being at the bottom of the heap, are heavy.
If high priorities are represented by small numbers, however, the meaning of light
and heavy is reversed.

// remove top element with pop_heap(first, last--)

template<typename RandomAccessIterator, typename Compare>

void pop_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp) {

iterator_traits<RandomAccessIterator>::

difference_type size = last - first-1, // new size
index = 0,

successor = 1;

assert(size >= 0);

/*The ‘removal’ is achieved by first putting the last element at the top position. The
element that was formerly first is saved at the last position. Saving it is certainly
not necessary for pop_heap(), but it is cheap and very advantageous if we want
to sort the heap (see below).
Then the heap is reorganized by letting the first element sink to its correct place,
in the course of which first the lighter successors rise and then the sinking element
is inserted at the position where the successor came from.

*/

iterator_traits<RandomAccessIterator>::

value_type temp = *(last - 1); // save last element

*(last-1) = *first; // copy first element to the end

while(successor < size) {

// perhaps the other successor is more important (i.e. bigger)?
if(successor+1 < size

&& comp(*(first+successor), *(first+successor+1)))

++successor;

if(comp(temp, *(first+successor))) {

// follow up

*(first+index) = *(first+successor);

index = successor;

successor = 2*index+1;

}

else

break;

}

HEAP ALGORITHMS 145

// insert element at now free position

*(first+index) = temp;

}

If no compare object is passed, we assume less<>:

template<typename RandomAccessIterator>

void pop_heap(RandomAccessIterator first,

RandomAccessIterator last) {

pop_heap(first, last, less<

iterator_traits<RandomAccessIterator>::value_type>());

}

5.7.2 push_heap
The function push_heap() adds an element to an existing heap. As the prototypes
show, the function is passed only two iterators and, if needed, a comparison object.
The element to be added does not appear:

template <class RandomAccessIterator>

void push_heap(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void push_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

The precondition must apply that the range [first, last-1) is a valid heap.
push_heap() does not care about the value to be added. Therefore, the value to
be added to the heap is previously entered at its position (last - 1). The sub-
sequent call of push_heap(first, last) ensures that after the call, the range
[first, last) is a heap. The handling of this function is somewhat long-winded,
but it is only intended as an auxiliary function and it is very fast. The complexity of
push_heap() is O(log(last− first)). At this point, two numbers are added to the
sample heap, as described above:

// enter an ‘important number’ (99)

*last = 99;

push_heap(v.begin(), ++last);

// enter an ‘unimportant number’ (–1)

*last = -1;

push_heap(v.begin(), ++last);

// display of the complete heap
// (no complete ordering, only heap condition!)
br_stl::showSequence(v); // 99 9 6 7 8 5 0 2 3 1 4 –1

146 STANDARD ALGORITHMS

During insertion, care must be taken that last does not run past v.end(). Be-
cause during removal the value with the highest priority is always placed on top, the
output is sorted:tip

// display of all numbers by priority:
while(last != v.begin()) {

cout << *v.begin() << ’ ’;

pop_heap(v.begin(), last--);

}

cout << endl; // 99 9 8 7 6 5 4 3 2 1 0 –1

push_heap implementation
In a push_heap() implementation the new element is first inserted at position last
(see above). From there it goes up to its correct place:

// Adding an element value by
// a) placing it at the the last position: *last = value

// b) reorganizing the heap with push_heap(first, ++last)

template<typename RandomAccessIterator, typename Compare>

void push_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp) {

/*The heap is reorganized by letting the last element rise to its correct place, in the
course of which first the heavier predecessor sinks and then the rising element is
inserted at the position where the predecessor left. The precondition must apply
that the range [first, last-1) is a valid heap.

*/

assert(first < last);

iterator_traits<RandomAccessIterator>::

difference_type index = last - first -1,

predecessor = (index-1)/2;

iterator_traits<RandomAccessIterator>::

value_type temp = *(first+index); // save element

while(index != 0 // root not yet reached
&& comp(*(first+predecessor), temp)) {

// let predecessor sink

*(first+index) = *(first+predecessor);

index = predecessor;

predecessor = (index-1)/2;

}

*(first+index) = temp;

}

// without compare object:
template<typename RandomAccessIterator>

HEAP ALGORITHMS 147

void push_heap(RandomAccessIterator first,

RandomAccessIterator last) {

push_heap(first, last, less<

iterator_traits<RandomAccessIterator>::value_type>());

}

5.7.3 make_heap
make_heap() ensures that the heap condition applies to all elements inside a range.
The prototypes are:

template <class RandomAccessIterator>

void make_heap(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void make_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

The complexity is proportional to the number of elements between first and
last. The example on page 143 shows the application to a vector as container:

make_heap(v.begin(), v.end()); // see page 143

make_heap implementation
An implementation for make_heap() is easy to write using push_heap(), for
example:

RandomAccessIterator temp = first + 1;

while(temp <= last) push_heap(first, temp++, comp);

The complexity is O(n log n). However, it is possible to make it faster. Only a
linear effort is necessary if the heap is constructed bottom up. Beginning with the
second level from the bottom, all nodes are compared to their successors. If a suc-
cessor is greater than the investigated node, their values are exchanged. After this the
next level is entered. This process is nothing else than visiting all nodes from the mid-
dle to the first in reverse order. That seems to yield a complexity O(n log n) because
after a swap the corresponding subtree has to be checked. But Cormen et al. (1994)
show that the asymptotical complexity is in fact O(n).

// make a heap out of an unsorted array
template<typename RandomAccessIterator, typename Compare>

void make_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp) {

iterator_traits<RandomAccessIterator>::

difference_type N = last-first, // size of heap
i, subroot, left, right, largest;

148 STANDARD ALGORITHMS

for(i = N/2-1; i >=0 ; --i) { // begin with the middle element
largest = i; // top of subtree to be checked

do // The loop corresponds to the recursive algorithm Heapify() in
{ // Cormen et al. (1994), Sec. 7.2.

subroot = largest; // assumption to be checked
left = 2*subroot+1; // index of left subtree, if it exists
right = left +1; // index of right subtree, if it exists

// compute position of largest element
if(left<N && comp(*(first+subroot),*(first+left)))

largest = left;

else largest = subroot;

if(right<N && comp(*(first+largest),*(first+right)))

largest = right;

if(largest != subroot) // swap, if heap-condition is violated
iter_swap(first+subroot, first+largest);

} while(subroot != largest); // check heap property for next level
}

}

// without compare object:
template<typename RandomAccessIterator>

void make_heap(RandomAccessIterator first,

RandomAccessIterator last) {

make_heap(first, last, less<

iterator_traits<RandomAccessIterator>::value_type>());

}

5.7.4 sort_heap
sort_heap() converts a heap into a sorted sequence. The sorting is not stable; the
complexity is O(N log N), when N is the number of elements to be sorted. The
prototypes are:

template <class RandomAccessIterator>

void sort_heap(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>

void sort_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp);

The sequence is sorted in ascending order. This means that the elements of high
priority are placed at the end of the sequence:

// generate new valid heap of all elements
make_heap(v.begin(), v.end());

HEAP ALGORITHMS 149

// and sort
sort_heap(v.begin(), v.end());

// display of the completely sorted sequence
br_stl::showSequence(v); // –1 0 1 2 3 4 5 6 7 8 9 99

sort_heap implementation and heapsort
With the help of pop_heap(), an implementaion is easy to write:

// Sort heap. High priorities (small numbers) lie at
// the beginning when comp = less
template<typename RandomAccessIterator, typename Compare>

void sort_heap(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp) {

// To sort the heap, we successively remove the first element and
// place it at the current end of the heap (this is done in pop_heap()!)
while(last - first > 1)

pop_heap(first, last--, comp); // remove
}

template<typename RandomAccessIterator>

void sort_heap(RandomAccessIterator first,

RandomAccessIterator last) {

sort_heap(first, last, less<

iterator_traits<RandomAccessIterator>::value_type>());

}

An arbitrary container with random access (e.g. a vector) can now easily be
sorted by converting it into a heap which after this is sorted:

// Sort arbitrary vector. Small numbers will be lying at the
// beginning, if comp = less.
// remark: This is not an STL algorithm!
template<typename RandomAccessIterator, typename Compare>

void Heapsort(RandomAccessIterator first,

RandomAccessIterator last,

Compare comp) {

make_heap(first, last, comp);

sort_heap(first, last, comp);

}

template<typename RandomAccessIterator>

void Heapsort(RandomAccessIterator first,

RandomAccessIterator last) {

make_heap(first, last);

sort_heap(first, last);

}

150 STANDARD ALGORITHMS

On the average heapsort is slower than quicksort by a factor of about two. How-
ever, its complexity O(n log n) also in the worst case is much better than the worst
case complexity of quicksort (average O(n log n), worst case O(n2)). We will en-
counter further heap algorithms in Section 11.2.

5.8 Minimum and maximum
The inline templates min() and max() return the smaller or the greater of two ele-
ments, respectively. In case of equality, the first element is returned. The prototypes
are:

template <class T>

const T& min(const T& a, const T& b);

template <class T, class Compare>

const T& min(const T& a, const T& b, Compare comp);

template <class T>

const T& max(const T& a, const T& b);

template <class T, class Compare>

const T& max(const T& a, const T& b, Compare comp);

The templates min_element() and max_element() return an iterator to the
smallest (or greatest) element of an interval [first, last). In case of equality of
the iterators, the first one is returned. The complexity is linear. The prototypes are:

template <class ForwardIterator>

ForwardIterator min_element(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class Compare>

ForwardIterator min_element(ForwardIterator first,

ForwardIterator last,

Compare comp);

template <class ForwardIterator>

ForwardIterator max_element(ForwardIterator first,

ForwardIterator last);

template <class ForwardIterator, class Compare>

ForwardIterator max_element(ForwardIterator first,

ForwardIterator last,

Compare comp);

LEXICOGRAPHICAL COMPARISON 151

5.9 Lexicographical comparison
The lexicographical comparison is used to compare two sequences which can even
be of different lengths. The function returns true when the first sequence is lexi-
cographically smaller. Both sequences are compared element by element, until the
algorithm encounters two different elements. If the element of the first sequence is
smaller than the corresponding element of the second sequence, true is returned.

If one of the two sequences has been completely searched before a different
element is found, the shorter sequence is considered to be smaller. The prototypes
are:

template <class InputIterator1, class InputIterator2>

bool lexicographical_compare(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2);

template <class InputIterator1, class InputIterator2,

class Compare>

bool lexicographical_compare(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

InputIterator2 last2,

Compare comp);

This allows alphabetical sorting of character strings, as shown in the example:

// k5/lexicmp.cpp
#include<algorithm>

#include<iostream>

#include<functional>

using namespace std;

char text1[] = "Arthur";

int length1 = sizeof(text1);

char text2[] = "Vera";

int length2 = sizeof(text2);

int main () {

if(lexicographical_compare(

text1, text1 + length1,

text2, text2 + length2))

cout << text1 << " comes before " << text2 << endl;

else

cout << text2 << " comes before " << text1 << endl;

if(lexicographical_compare(

text1, text1 + length1,

text2, text2 + length2,

152 STANDARD ALGORITHMS

greater<char>())) // reverse sorting order
cout << text1 << " comes after " << text2 << endl;

else

cout << text2 << " comes after " << text1 << endl;

}

The simple char arrays are chosen on purpose. We ignore that objects of the
string class can be compared in this way by means of the < operator. Lexico-
graphical sorting of the kind found in a phone book requires slightly more effort,
because, for example, umlauts and accented letters are considered to be equivalent
to the corresponding unaccented letters.

5.10 Permutations
A permutation originates from a sequence by exchanging two elements. (0, 2, 1) is
a permutation originated from (0, 1, 2). For a sequence of N elements, there exist
N ! = N(N−1)(N−2)...2·1 permutations, that is 3·2·1 = 6 in the above example:

(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)

You can imagine the set of all N ! permutations of a sequence in an ordered
form as above, with the ordering created either by means of the < operator or with a
comparison object comp.

The ordering defines a unique sequence, so that the next or the previous permu-
tation is uniquely determined. The sequence is regarded as cyclic, that is, the per-
mutation following (2, 1, 0) is (0, 1, 2). The algorithms prev_permutation() and
next_permutation() convert a sequence into the previous or next permutation,
respectively:

template <class BidirectionalIterator>

bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template <class BidirectionalIterator,

class Compare>

bool prev_permutation(BidirectionalIterator first,

BidirectionalIterator last

Compare comp);

template <class BidirectionalIterator>

bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last);

template <class BidirectionalIterator,

class Compare>

bool next_permutation(BidirectionalIterator first,

BidirectionalIterator last

Compare comp);

NUMERIC ALGORITHMS 153

When a permutation is found, the return value is true. Otherwise, it is the end
of a cycle. Then, false is returned and the sequence is converted into the small-
est possible one (with next_permutation()) or the greatest possible one (with
prev_permutation()), according to the sorting criterion. For example:

// k5/permute.cpp
#include<algorithm>

#include<showseq.h>

#include<vector>

#include<iota.h>

using namespace std;

long factorial(unsigned n) {

long fac = 1;

while(n > 1) fac *= n--;

return fac;

}

int main() {

vector<int> v(4);

br_stl::iota(v.begin(), v.end(), 0); // 0 1 2 3
long fac = factorial(v.size());

for(int i = 0; i < fac; ++i) {

if(!prev_permutation(v.begin(), v.end()))

cout << "Start of cycle:\n";

br_stl::showSequence(v);

}

}

This example first produces the message ‘Start of cycle,’ because the initializa-
tion of the vector with (0, 1, 2, 3) does not allow determination of a previous permu-
tation without exceeding the cycle. Therefore, the greatest sequence after sorting is
produced next, namely (3, 2, 1, 0). The ‘Start of cycle’ message could be prevented
by substituting prev_permutation() with next_permutation() in the exam-
ple, or alternatively by passing a comparison object greater<int>() as the third
parameter.

5.11 Numeric algorithms
These algorithms describe general numerical operations. Access to these algorithms
is possible via #include<numeric>.

5.11.1 accumulate
This algorithm adds all values *i of an iterator i from first to last to an initial
value. If, instead of the addition, another operation is to be used, there are overloaded
variations which are passed this operation as the last parameter. The prototypes are:

154 STANDARD ALGORITHMS

template<class InputIterator, class T>

T accumulate(InputIterator first,

InputIterator last,

T init);

template<class InputIterator, class T,

class binaryOperation>

T accumulate(InputIterator first,

InputIterator last,

T init,

binaryOperation binOp);

The following example calculates the sum and the product of all elements of a
vector. In these cases, 0 or 1 have to be used as initial values for init. Since in the
example the vector is initialized with the sequence of natural numbers, the product
equals the factorial of 10. The functor multiplies is described on page 24.

// k5/accumulate.cpp
#include<iota.h>

#include<numeric>

#include<vector>

using namespace std;

int main() {

vector<int> v(10);

br_stl::iota(v.begin(), v.end(), 1);

cout << "Sum = " // init +
∑

i
vi

<< accumulate(v.begin(), v.end(), 0) // 55
<< endl;

cout << "Product = "

<< accumulate(v.begin(), v.end(), 1L, // init ·
∏

i
vi

multiplies<long>()) // 3628800
<< endl;

}

5.11.2 inner_product
This algorithm adds the inner product of two containers u and v, which will mostly
be vectors, to the initial value init:

Result = init +
∑

i vi · ui

Instead of addition and multiplication, other operations may be chosen as well.
The prototypes are:

template<class InputIterator1, class InputIterator2,

class T>

T inner_product(InputIterator1 first1,

NUMERIC ALGORITHMS 155

InputIterator1 last1,

InputIterator2 first2,

T init);

template<class InputIterator1, class InputIterator2,

class T,

class binaryOperation1, class binaryOperation2>

T inner_product(InputIterator1 first1,

InputIterator1 last1,

InputIterator2 first2,

T init,

binaryOperation1 binOp1,

binaryOperation2 binOp2);

In a Euclidean n-dimensional space Rn, the length of a vector is defined as the
root of the inner product of the vector with itself. The example calculates the length
of a vector in R4. The value of init must again be 0.

// k5/innerproduct.cpp
#include<numeric>

#include<vector>

#include<cmath>

#include<iota.h>

using namespace std;

// functor for calculating the square of a difference (see below)
template<class T>

struct difference_square {

const T operator()(const T& x, const T& y) {

const T d = x - y;

return d*d;

}

};

int main() {

int dimension = 4;

vector<int> v(dimension,1);

cout << "Length of vector v = "

<< sqrt((double) inner_product(v.begin(), v.end(),

v.begin(), 0))

<< endl;

/*In order to show the application of other mathematical operators, the following
part of the example calculates the distance between two points. Besides the func-
tors of Section 1.6.3, user-defined functors are allowed as well, such as, in this
case, the functor difference_square.

*/

156 STANDARD ALGORITHMS

// 2 points p1 and p2
vector<double> p1(dimension,1.0),

p2(dimension);

br_stl::iota(p2.begin(), p2.end(), 1.0); // arbitrary vector

cout << "Distance between p1 and p2 = "

<< sqrt(inner_product(p1.begin(), p1.end(),

p2.begin(), 0.0,

plus<double>(),

difference_square<double>()))

<< endl;

}

The first operator is the addition (summation), the second operator the quadrature
of the differences:

Distance =
√∑

i(vi − ui)2

5.11.3 partial_sum
Partial summation functions in the same way as accumulate(), but the result of
each step is stored in a result container given by the result iterator. The prototypes
are:

template<class InputIterator, class OutputIterator>

OutputIterator partial_sum(InputIterator first,

InputIterator last,

OutputIterator result);

template<class InputIterator, class OutputIterator,

class binaryOperation>

OutputIterator partial_sum(InputIterator first,

InputIterator last,

OutputIterator result,

binaryOperation binOp);

The example shows both variations. The last number of each sequence corre-
sponds to the result of accumulate() in the earlier example.

// k5/partialsum.cpp
#include<numeric>

#include<vector>

#include<showseq.h>

#include<iota.h>

using namespace std;

int main() {

vector<long> v(10), ps(10);

br_stl::iota(v.begin(), v.end(), 1); // natural numbers

NUMERIC ALGORITHMS 157

cout << "vector = ";

br_stl::showSequence(v); // 1 2 3 4 5 6 7 8 9 10

partial_sum(v.begin(), v.end(), ps.begin());

cout << "Partial sums = ";

br_stl::showSequence(ps); // 1 3 6 10 15 21 28 36 45 55

// Sequence of factorials
cout << "Partial products = ";

partial_sum(v.begin(), v.end(), v.begin(),

multiplies<long>());

// 1 2 6 24 120 720 5040 40320 362880 3628800
br_stl::showSequence(v);

}

5.11.4 adjacent_difference
This algorithm calculates the difference between consecutive elements of a container
v and writes the result into a result container e pointed to by the result iterator.
Since there is exactly one difference value less than there are elements, the first
element is retained. If the first element has the index 0, the following holds:

e0 = v0

ei = vi − vi−1, i > 0

Besides calculation of differences, other operations are possible. The prototypes
are:

template<class InputIterator, class OutputIterator>

OutputIterator adjacent_difference(InputIterator first,

InputIterator last,

OutputIterator result);

template<class InputIterator, class OutputIterator,

class binaryOperation>

OutputIterator adjacent_difference(InputIterator first,

InputIterator last,

OutputIterator result,

binaryOperation binOp);

The example shows both variations. In the first one, the differences are calcu-
lated; in the second one, a sequence of Fibonacci numbers is calculated. (Leonardo
of Pisa, called Fibonacci, was an Italian mathematician who lived 1180–1240.)

// k5/adjacent_difference.cpp
#include<numeric>

#include<vector>

#include<iota.h>

#include<showseq.h>

using namespace std;

158 STANDARD ALGORITHMS

int main() {

vector<long> v(10), ad(10);

br_stl::iota(v.begin(), v.end(), 0);

cout << "vector = ";

br_stl::showSequence(v); // 0 1 2 3 4 5 6 7 8 9

cout << "Differences = ";

adjacent_difference(v.begin(), v.end(), ad.begin());

br_stl::showSequence(ad); // 0 1 1 1 1 1 1 1 1 1

// Fibonacci numbers
vector<int> fib(16);

fib[0] = 1; // initial value
/*One initial value is sufficient here because the first value is written to the first

position (see formula e0 = v0 on the previous page) and the result iterator which
is shifted by one position (see formula ei = vi − vi−1). Therefore, after the first
step of the algorithm, fib[1] equals 1.

*/

cout << "Fibonacci numbers = ";

adjacent_difference(fib.begin(), fib.end()-1,

(fib.begin()+1), plus<int>());

br_stl::showSequence(fib);

// 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
}

If, instead of the difference, the sum of both predecessors is used, the result
container is filled with a sequence of Fibonacci numbers. Fibonacci asked himself,
how many pairs of rabbits there would be after n years, if, beginning with the sec-
ond year, each couple generates another couple. The fact that rabbits eventually die
was ignored for the purpose of this problem. The answer to this question is that the
number of rabbits in the year n is equal to the sum of the numbers of the years
n − 1 and n − 2. Fibonacci numbers play an important role in information science
(Knuth (1994), Cormen et al. (1994)). It should be noted that at the beginning of the
construction of the sequence, the result iterator must be fib.begin()+1.

