
Various applications 8
Summary: While the following chapters deal with complex data structures and algo-
rithms, this chapter looks at smaller applications that show how, thanks to the power
of the STL, much can be achieved with relatively short programs. The applications
are: output of a cross-reference list of identifiers in a text, generation of a permuted
index, and search for related concepts of a given term (thesaurus).

8.1 Cross-reference
The first example is a program for printing a cross-reference list, that is, a list which
contains the words or identifiers occurring in the text in alphabetical order, together
with the position of their occurrence, in this case, their line numbers. This is the
beginning of the cross-reference list that belongs to the following program:

_ : 42 51 54

a : 11 18 20 20 20 22 65 67 71

aKey : 48 55 61 67

all : 10

and : 9

are : 68 68

avoid : 9

b : 18 21 21 21 22

back : 58

be : 10 66

because : 66

begin : 74

beginning : 39 69
...

In the simple variation described here, words occurring in comments are output
as well. The appropriate data structure is a map container. The value pairs consist of
the identifier of type string as key and a list of line numbers. Because of the sorted
storage, no special sorting process is needed.

186 VARIOUS APPLICATIONS

// k8/crossref.cpp : program for printing cross-references
#include<fstream>

#include<string>

#include<list>

#include<cctype>

#include<showseq.h>

#include<map>

/*To avoid different sorting of upper case and lower case letters, the class Compare is
used which converts all strings to be compared into lower case, since a corresponding
function is not provided in the string class:

*/

struct Compare {

bool operator()(std::string a, std::string b) const {

for(size_t i=0; i< a.length(); ++i)

a[i]=std::tolower(a[i]);

for(size_t i=0; i< b.length(); ++i)

b[i]=std::tolower(b[i]);

return a < b;

}

};

using namespace std;

int main() {

// This program generates its own cross-reference list.
ifstream Source("crossref.cpp");

typedef map<string, list<int>, Compare > MAP;

MAP CrossRef;

char c;

int LineNo = 1;

/*The next section largely corresponds to the operator>>() on page 41. The
difference lies in the counting of lines.

*/

while(Source) {

// find beginning of identifier
c = ’\0’;

while(Source && !(isalpha(c) || ’_’ == c)) {

Source.get(c);

if(c == ’\n’) ++LineNo;

}

string aKey(1,c);

// collect rest of identifier
while(Source && (isalnum(c) || ’_’ == c)) {

PERMUTED INDEX 187

Source.get(c);

if(isalnum(c) || ’_’ == c)

aKey += c;

}

Source.putback(c); // back to input stream

if(c)

CrossRef[aKey].push_back(LineNo); // entry
}

/*Putting the line number in the list utilizes the fact that the
MAP::operator[]() returns a reference to the entry, even if this has
still to be created because the key does not yet exist. The entry for the key aKey
is a list. Since the line numbers are inserted with push_back(), they are in the
correct order from the very beginning.

The output of the cross-reference list profits by the sorted storage. The first
element of a value pair is the identifier (key), the second element is the list
which is output by means of the known template.

*/

MAP::const_iterator iter = CrossRef.begin();

while(iter != CrossRef.end()) {

cout << (*iter).first; // identifier
cout.width(20 - (*iter).first.length());

cout << ": ";

br_stl::showSequence((*iter++).second); // line numbers
}

}

8.2 Permuted index
A permuted index is printed by some journals at the beginning of a new year to
facilitate retrieving articles from the previous year using the terms contained in the
titles. The permuted index is alphabetically sorted by words in the title and thus
facilitates the search for articles on a given subject. Table 8.1 shows an example
with the three titles ‘Electronic Mail and POP,’ ‘Objects in the World Wide Web,’
and ‘Unix or WindowsNT?’

The alphabetical order of the terms in the second column allows quick orienta-
tion. Table 8.1 was generated by the following sample program which exploits a map
container and its property of sorted storage. A pointer to each relevant word – here,
all words beginning with an upper case letter are included – is stored in the map
container together with the current title number. Subsequently, the contents may be
output only in a formatted way.

188 VARIOUS APPLICATIONS

Search term Page

Electronic Mail and POP 174
Electronic Mail and POP 174

Objects in the World Wide Web 162
Electronic Mail and POP 174

Unix or WindowsNT? 12
Objects in the World Wide Web 162

Objects in the World Wide Web 162
Unix or WindowsNT? 12

Objects in the World Wide Web 162

Table 8.1: Example of a permuted index.

// k8/permidx.cpp
// Program for generation of a permuted index
#include<iostream>

#include<vector>

#include<string>

#include<cstring> // for strcmp()
#include<map>

#include<cctype>

/*The class StringCompare is needed for the creation of a function object for the map
container.

*/
struct StringCompare {

bool operator()(const char* a, const char* b) const {

return std::strcmp(a,b) < 0;

}

};

using namespace std;

int main() {

vector<string> Title(3);

vector<int> Page(Title.size());

/*Normally, titles and page numbers would be read from a file, but for simplicity, in
this example both are wired in:

*/
Title[0] = "Electronic Mail and POP"; Page[0]=174;

Title[1] = "Objects in the World Wide Web"; Page[1]=162;

Title[2] = "Unix or WindowsNT?"; Page[2]= 12;

typedef map<const char*, int, StringCompare> MAP;

MAP aMap;

PERMUTED INDEX 189

/*All pointers to words that begin with an upper case letter are stored in the map
container together with the page numbers of the titles. It is assumed that words
are separated by spaces. An alternative could be to store not the pointers, but the
words themselves as string objects.

On average, however, this would require more memory, and a multimap container
would have to be used, because the same words can occur in different titles. The
pointers, in contrast, are unique. The same words in different titles have different
addresses.

*/

for(size_t i = 0; i < Title.size(); ++i) {

size_t j = 0;

do {

const char *Word = Title[i].c_str() + j;

if(isalpha(*Word) && isupper(*Word))

aMap[Word] = i; // entry

// find next space
while(j < Title[i].length()

&& Title[i][j] != ’ ’) ++j;

// find beginning of word
while(j < Title[i].length()

&& !isalpha(Title[i][j])) ++j;

} while(j < Title[i].length());

}

/*The map container is filled, now we need the output. As usual in such cases, the
formatting requires more program lines than the rest.

*/

MAP::const_iterator I = aMap.begin();

const size_t leftColumnWidth = 28,

rightColumnWidth = 30;

while(I != aMap.end()) {

// determine left column text
// = first character of title no. (*I).second
// up to the beginning of the search term
// which begins at (*I).first.
const char *begin = Title[(*I).second].c_str();

const char *end = (*I).first;

// and output with leading spaces
cout.width(leftColumnWidth-(end-begin));

cout << " ";

while(begin != end)

cout << *begin++;

// output right column text
cout << " "; // highlight separation left/right

190 VARIOUS APPLICATIONS

cout.width(rightColumnWidth);

cout.setf(ios::left, ios::adjustfield); // ranged left
cout << (*I).first;

cout.width(4);

cout.setf(ios::right, ios::adjustfield); // ranged right
cout << Page[(*I).second] // page number

<< endl;

++I; // go to next entry
}

}

8.3 Thesaurus
A thesaurus is a systematic collection of words and terms that allows you to find
terms related to a given concept. The terms can be similar, but they can also represent
opposites or antonyms. In this respect, a thesaurus is a counterpart to a dictionary.
The dictionary explains the concept belonging to a given term; the thesaurus presents
words related by subject and meaning to a given concept.

The thesaurus used in this example was published in its original form by
Peter Mark Roget in 1852. It is contained in the file roget.dat, which is used by
Knuth (1994) for the generation of a directed graph of 1022 nodes and 5075 edges
(= references). The file can be obtained via FTP (see page 271).

Instead of building a graph, this section shows how very fast access to related
terms is possible with the lower-bound algorithm. A possible application could be in
a text processing system, to provide an author with a formulation aid. The lines of
the file look as follows:

1existence:2 69 125 149 156 166 193 455 506 527

2inexistence:1 4 167 192 194 368 458 526 527 771

3substantiality:4 323 325

4unsubstantiality:3 34 194 360 432 452 458 527 and so on.

The numbers after the concept substantiality mean that corresponding en-
tries can be found in lines 4, 323, and 325. There are several possibilities to allow fast
access. Here, the lower_bound() algorithm is employed, which assumes a sorted
container and works with the principle of binary search. It finds the first position that
can be used for insertion into the container without violating the sorting order. Thus,
the algorithm is also suitable for finding an entry in a container.

Three different containers are needed:

• a vector to contain all terms,

• a vector of lists containing the references, and

• a vector that contains the sorting order and is used as an index vector for fast
access.

THESAURUS 191

The alternative of not using an index vector and sorting the first two vectors is
not chosen, because it is a rather long-winded process to update all references in the
lists.

// k8/thesaur.cpp : program for the output of terms
// related to a given concept
#include<fstream>

#include<vector>

#include<string>

#include<list>

#include<cctype>

#include<algorithm>

#include<iostream>

struct indirectCompare {

indirectCompare(const std::vector<std::string>& v) : V(v)

{}

bool operator()(int x, int y) const {

return V[x] < V[y];

}

bool operator()(int x, const std::string& a) const {

return V[x] < a;

}

const std::vector<std::string>& V;

};

/*The class indirectCompare compares the corresponding values in the vector V for
passed indices, and the reference is initialized during construction of the object. The
second overloaded function operator directly compares a value with a vector element
whose index is given.

*/

void readRoget(std::vector<std::string>& Words,

std::vector<std::list<int> >& lists) {

// see Appendix, pages 265 ff
}

/*The procedure readRoget() reads the file roget.dat and has nothing much to do with
the STL. It mainly concentrates on analysis and conversion of the data format and has
therefore been relegated to the Appendix.

*/

using namespace std;

int main() {

const int Maxi = 1022; // number of entries in roget.dat

192 VARIOUS APPLICATIONS

vector<string> Words(Maxi);

vector<list<int> > relatedWords(Maxi);

vector<int> Index(Maxi);

// read thesaurus file
readRoget(Words,relatedWords);

// build index vector
for(size_t i = 0; i < Index.size(); ++i)

Index[i] = i;

indirectCompare aComparison(Words); // functor
sort(Index.begin(), Index.end(), aComparison);

/*The index vector now indicates the ordering, so that Words[Index[0]] is the
first term according to the alphabetical sorting order. This creates the precondition
for a binary search.

*/

cout << "Search term? ";

string SearchTerm;

getline(cin, SearchTerm);

// binary search
vector<int>::const_iterator TableEnd,

where = lower_bound(Index.begin(), Index.end(),

SearchTerm, aComparison);

/*If the iterator where points to the end of the table, the term was not found.
Otherwise, a check must be made as to whether the found term matches the
search term in its first characters. This does not have to be the case, because
lower_bound() only returns a position which is suitable for sorted insertion.

*/

bool found = true; // hypothesis to be checked
if(where == TableEnd)

found = false;

else {

// next possible entry is ≥ search term
// do they match?

size_t i = 0;

while(i < Words[*where].length()

&& i < SearchTerm.length()

&& found)

if(Words[*where][i] != SearchTerm[i])

found = false;

else ++i;

}

THESAURUS 193

/*If the term is found, the list of references, provided that references exist, is
‘scoured’ with the iterator here, and the corresponding terms are displayed on
screen.

*/

if(found) {

cout << "found : "

<< Words[*where] << endl

<< "related words:\n";

list<int>::const_iterator

atEnd = relatedWords[*where].end(),

here = relatedWords[*where].begin();

if(here == atEnd)

cout << "not found\n";

else

while(here != atEnd)

cout << ’\t’ << Words[*here++] << endl;

}

else cout << "not found\n";

}

To conclude, the output of the program for the search term ‘free’ is shown:

Search term? free
found : freedom
related words:

cheapness
permission
liberation
subjection
hindrance
facility
will

