- W CAAER.. WY e
PART SiX

Internet Applications

Part Six looks at a range of applications that operate over the Internet.

ROAD MAP FOR PART SIX

Chapter 21 Network Security

Network security has become increasingly important with the growth
in the number and importance of networks. Chapter 21 provides a sur-
vey of security techniques and services. The chapter begins with a look
at encryption techniques for ensuring confidentiality, which include the
use of conventional and public-key encryption. Then the area of
authentication and digital signatures is explored. The two most impor-
tant encryption algorithms, AES and RSA, are examined, as well as
SHA-1, a one-way hash function important in a number of security
applications. Chapter 21 also discusses SSL and the set of IP security
standards.

Chapter 22 Internet Applications—Electronic Mail
and Network Management

The purpose of a communications architecture is to support distributed
applications. Chapter 22 examines two of the most important of these
applications; in each case, general principles are discussed, followed by a
specific example. The applications discussed are electronic mail and net-
work management. The corresponding examples are SMTP and MIME;
and SNMP.

699

Chapter 23 Internet Applications—Internet Directory
Service and World Wide Web

Chapter 23 looks at several important modern application areas for the
Internet. The Domain Name System (DNS) is a directory lookup service
that provides a mapping between the name of a host on the Internet and
its numerical address; it is a required application as specified in RFC 1123.
The Hypertext Transfer Protocol (HTTP) supports the exchange of
requests and responses between Web browsers and Web servers.

Chapter 24 Internet Applications—Multimedia

Chapter 24 examines key topics related to multimedia. The chapter begins
with a discussion of audio and video compression. The Session Initiation
Protocol (SIP) is an application-level control protocol for setting up, mod-
ifying, and terminating real-time sessions between participants over an IP
data network; these include telephony and multimedia sessions. Finally,
this chapter examines the Real-Time Transport Protocol (RTP).

700

el | gL [

NETWORK SECURITY

211

21.2

21.3

214

21.5

21.6

21.7

21.8

21.9

Security Requirements and Attacks
Confidentiality with Symmetric Encryption
Message Authentication and Hash Functions
Public-Key Encryption and Digital Signatures
Secure Socket Layer and Transport Layer Security
IPv4 and IPv6 Security

Wi-F1 Protected Access

Recommended Reading and Web Sites

Key Terms, Review Questions, and Problems

701

702

CHAPTER 21 / NETWORK SECURITY

To guard against the baneful influence exerted by strangers is therefore an elementary
dictate of savage prudence. Hence before strangers are allowed to enter a district, or at
least before they are permitted to mingle freely with the inhabitants, certain cere-
monies are often performed by the natives of the country for the purpose of disarming
the strangers of their magical powers, or of disinfecting, so to speak, the tainted atmos-
phere by which they are supposed to be surrounded.

—The Golden Bough, Sir James George Frazer

KEY POINTS

e Network security threats fall into two categories. Passive threats,
sometimes referred to as eavesdropping, involve attempts by an
attacker to obtain information relating to a communication. Active
threats involve some modification of the transmitted data or the cre-
ation of false transmissions.

e By far the most important automated tool for network and communi-
cations security is encryption. With symmetric encryption, two parties
share a single encryption/decryption key. The principal challenge with
symmetric encryption is the distribution and protection of the keys. A
public-key encryption scheme involves two keys, one for encryption
and a paired key for decryption. The party that generated the key pair
keeps one of the keys private and makes the other key public.

e Symmetric encryption and public-key encryption are often combined
in secure networking applications. Symmetric encryption is used to
encrypt transmitted data, using a one-time or short-term session key.
The session key can be distributed by a trusted key distribution center
or transmitted in encrypted form using public-key encryption. Public-
key encryption is also used to create digital signatures, which can
authenticate the source of transmitted messages.

e The Secure Sockets Layer (SSL) and the follow-on Internet standard
known as Transport Layer Security (TLS) provide security services
for Web transactions.

e A security enhancement used with both IPv4 and IPv6, called IPSec,
provides both confidentiality and authentication mechanisms.

The requirements of information security within an organization have under-
gone two major changes in the last several decades. Before the widespread use of
data processing equipment, the security of information felt to be valuable to an
organization was provided primarily by physical and administrative means. An

21.1 / SECURITY REQUIREMENTS AND ATTACKS 703

example of the former is the use of rugged filing cabinets with a combination lock
for storing sensitive documents. An example of the latter is personnel screening
procedures used during the hiring process.

With the introduction of the computer, the need for automated tools for
protecting files and other information stored on the computer became evident.
This is especially the case for a shared system, such as a time-sharing system, and
the need is even more acute for systems that can be accessed over a public tele-
phone or data network. The generic name for the collection of tools designed to
protect data and to thwart hackers is computer security. Although this is an
important topic, it is beyond the scope of this book.

The second major change that affected security is the introduction of dis-
tributed systems and the use of networks and communications facilities for
carrying data between terminal user and computer and between computer and
computer. Network security measures are needed to protect data during their
transmission and to guarantee that data transmissions are authentic.

The essential technology underlying virtually all automated network and
computer security applications is encryption. Two fundamental approaches are in
use: symmetric encryption and public-key encryption, also known as asymmetric
encryption. As we look at the various approaches to network security, these two
types of encryption will be explored.

The chapter begins with an overview of the requirements for network
security. Next, we look at symmetric encryption and its use to provide confi-
dentiality. This is followed by a discussion of message authentication. We then
look at the use of public-key encryption and digital signatures. The chapter
closes with an examination of security features in SSL, I[PSec, and Wi-Fi Pro-
tected Access.

21.1 SECURITY REQUIREMENTS AND ATTACKS

To understand the types of threats to security that exist, we need to have a definition
of security requirements. Computer and network security address four require-
ments:

Confidentiality: Requires that data only be accessible by authorized parties.
This type of access includes printing, displaying, and other forms of disclosure,
including simply revealing the existence of an object.

Integrity: Requires that only authorized parties can modify data. Modification
includes writing, changing, changing status, deleting, and creating.

Availability: Requires that data are available to authorized parties.
Authenticity: Requires that a host or service be able to verify the identity of a user.

A useful means of classifying security attacks (RFC 2828) is in terms of passive
attacks and active attacks. A passive attack attempts to learn or make use of infor-
mation from the system but does not affect system resources. An active attack
attempts to alter system resources or affect their operation.

704 CHAPTER 21 / NETWORK SECURITY

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmis-
sions. The goal of the opponent is to obtain information that is being transmitted.
Two types of passive attacks are release of message contents and traffic analysis.

The release of message contents is easily understood. A telephone conversa-
tion, an electronic mail message, or a transferred file may contain sensitive or confi-
dential information. We would like to prevent an opponent from learning the
contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. Even
with encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion and neither the sender nor receiver is aware that a third party
has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the emphasis
in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or the creation of a
false stream and can be subdivided into four categories: masquerade, replay, modifi-
cation of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity. A
masquerade attack usually includes one of the other forms of active attack. For exam-
ple, authentication sequences can be captured and replayed after a valid authentica-
tion sequence has taken place, thus enabling an authorized entity with few privileges
to obtain extra privileges by impersonating an entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

Modification of messages simply means that some portion of a legitimate mes-
sage is altered, or that messages are delayed or reordered, to produce an unautho-
rized effect. For example, a message meaning “Allow John Smith to read
confidential file accounts” is modified to mean “Allow Fred Brown to read confi-
dential file accounts.”

The denial of service prevents or inhibits the normal use or management of
communications facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the secu-
rity audit service). Another form of service denial is the disruption of an entire net-
work or a server, either by disabling the network server or by overloading it with
messages so as to degrade performance.

21.2 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 705

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their suc-
cess. On the other hand, it is quite difficult to prevent active attacks absolutely,
because to do so would require physical protection of all communications facilities
and paths at all times. Instead, the goal is to detect them and to recover from any
disruption or delays caused by them. Because the detection has a deterrent effect, it
may also contribute to prevention.

21.2 CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION

The universal technique for providing confidentiality for transmitted data is sym-
metric encryption. This section looks first at the basic concept of symmetric encryp-
tion, followed by a discussion of the two most important symmetric encryption
algorithms: the Data Encryption Standard (DES) and the Advanced Encryption
Standard (AES). We then examine the application of symmetric encryption to
achieve confidentiality.

Symmetric Encryption

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the introduction of pub-
lic-key encryption in the late 1970s. Countless individuals and groups, from Julius
Caesar to the German U-boat force to present-day diplomatic, military, and com-
mercial users, have used symmetric encryption for secret communication. It remains
by far the more widely used of the two types of encryption.

A symmetric encryption scheme has five ingredients (Figure 21.1):

Plaintext: This is the original message or data that is fed into the algorithm as
input.

Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

Secret key: The secret key is also input to the encryption algorithm. The exact
substitutions and transformations performed by the algorithm depend on the key.

Secret key shared by Secret key shared by
sender and recipient sender and recipient
- K - K
| |
J— Transmitted J—
= X ciphertext e
—— Y = E[K, X] X =DIK,Y] | ==
Plaintext - g - § Plaintext
input Encryption algorithm Decryption algontl}m output
(e.g., DES) (reverse of encryption
algorithm)

Figure 21.1 Simplified Model of Symmetric Encryption

706 CHAPTER 21 / NETWORK SECURITY

¢ Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

e Decryption algorithm: This is essentially the encryption algorithm run in reverse.
It takes the ciphertext and the secret key and produces the original plaintext.

There are two requirements for secure use of symmetric encryption:

1. We need a strong encryption algorithm. At a minimum, we would like the
algorithm to be such that an opponent who knows the algorithm and has
access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key. This requirement is usually stated in a stronger form: The
opponent should be unable to decrypt ciphertext or discover the key even if he
or she is in possession of a number of ciphertexts together with the plaintext
that produced each ciphertext.

2. Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

There are two general approaches to attacking a symmetric encryption scheme.
The first attack is known as eryptanalysis. Cryptanalytic attacks rely on the nature of
the algorithm plus perhaps some knowledge of the general characteristics of the
plaintext or even some sample plaintext-ciphertext pairs. This type of attack exploits
the characteristics of the algorithm to attempt to deduce a specific plaintext or to
deduce the key being used. If the attack succeeds in deducing the key, the effect is
catastrophic: All future and past messages encrypted with that key are compromised.

The second method, known as the brute-force attack, is to try every possible
key on a piece of ciphertext until an intelligible translation into plaintext is obtained.
On average, half of all possible keys must be tried to achieve success. Table 21.1
shows how much time is involved for various key sizes. The table shows results for
each key size, assuming that it takes 1 s to perform a single decryption, a reasonable
order of magnitude for today’s computers. With the use of massively parallel organi-
zations of microprocessors, it may be possible to achieve processing rates many
orders of magnitude greater. The final column of the table considers the results for a
system that can process 1 million keys per microsecond. As one can see, at this per-
formance level, a 56-bit key can no longer be considered computationally secure.

Table 21.1 Average Time Required for Exhaustive Key Search

Number of Time Required at Time Required at 10°
Key Size (bits) Alternative Keys 1 Decryption/us Decryptions/pus
32 232 =43 x 10° 23! us = 35.8 minutes 2.15 milliseconds
56 2% =172 x 10'° 2% us = 1142 years 10.01 hours
128 2 = 34 3¢ 1T 227 us = 5.4 X 10** years 5.4 x 10'® years
168 2 = 37 % 107 2167 s = 5.9 X 10°® years 5.9 x 10* years
26 characters 26! = 4 x 10% 2 X 10% us = 6.4 X 10'% years 6.4 X 10° years
(permutation)

21.2 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 707

Encryption Algorithms

The most commonly used symmetric encryption algorithms are block ciphers. A
block cipher processes the plaintext input in fixed-size blocks and produces a block
of ciphertext of equal size for each plaintext block. The two most important sym-
metric algorithms, both of which are block ciphers, are the Data Encryption Stan-
dard (DES) and the Advanced Encryption Standard (AES).

Data Encryption Standard DES has been the dominant encryption algorithm
since its introduction in 1977. However, because DES uses only a 56-bit key, it was
only a matter of time before computer processing speed made DES obsolete. In
1998, the Electronic Frontier Foundation (EFF) announced that it had broken a
DES challenge using a special-purpose “DES cracker” machine that was built for
less than $250,000. The attack took less than three days. The EFF has published a
detailed description of the machine, enabling others to build their own cracker
[EFF98]. And, of course, hardware prices will continue to drop as speeds increase,
making DES worthless.

The life of DES was extended by the use of triple DES (3DES), which involves
repeating the basic DES algorithm three times, using either two or three unique
keys, for a key size of 112 or 168 bits.

The principal drawback of 3DES is that the algorithm is relatively sluggish
in software. A secondary drawback is that both DES and 3DES use a 64-bit
block size. For reasons of both efficiency and security, a larger block size is
desirable.

Advanced Encryption Standard Because of these drawbacks, 3DES is not
a reasonable candidate for long-term use. As a replacement, the National Insti-
tute of Standards and Technology (NIST) in 1997 issued a call for proposals for a
new Advanced Encryption Standard (AES), which should have a security
strength equal to or better than 3DES and significantly improved efficiency.
In addition to these general requirements, NIST specified that AES must be a
symmetric block cipher with a block length of 128 bits and support for key
lengths of 128, 192, and 256 bits. Evaluation criteria include security, computa-
tional efficiency, memory requirements, hardware and software suitability, and
flexibility. In 2001, AES was issued as a federal information processing standard
(FIPS 197).

In the description of this section, we assume a key length of 128 bits, which is
likely to be the one most commonly implemented.

Figure 21.2 shows the overall structure of AES. The input to the encryption
and decryption algorithms is a single 128-bit block. In FIPS 197, this block is
depicted as a square matrix of bytes. This block is copied into the State array,
which is modified at each stage of encryption or decryption. After the final stage,
State is copied to an output matrix. Similarly, the 128-bit key is depicted as a
square matrix of bytes. This key is then expanded into an array of key schedule
words; each word is 4 bytes and the total key schedule is 44 words for the 128-bit
key. The ordering of bytes within a matrix is by column. So, for example, the first
four bytes of a 128-bit plaintext input to the encryption cipher occupy the first col-
umn of the in matrix, the second four bytes occupy the second column, and so on.

708 CHAPTER 21 / NETWORK SECURITY

Plaintext Key Plaintext
{ — i
| Addroundkey |[«————wi0,3]—————>| Addroundkey |
v i 2
| Substitute bytes | | Expand key | | Inverse sub bytes | E
' i &
- | Shift rows | | Inverse shift rows |
e e -
§ | Mix columns | | Inverse mix cols |
' l i
| Addroundkey |[«——— w4, 7]————>| Addroundkey | o
! —
| Inverse sub bytes | §
i
| Inverse shift rows |
{ 1
| Substitute bytes |
'
> | Shiftrows |
! i
& | Mix columns | | Inverse mix cols |
' l i
| Addroundkey |[«———w[36,39]———>| Addroundkey |
I f
| Substitute bytes | | Inverse sub bytes | ~
< } i
] | Shift rows | _l | Inverse shift rows |
32
g { i

| Addroundkey |«————— w[40,43] ——>| Addroundkey |
{ i

Ciphertext Ciphertext
(a) Encryption (b) Decryption

Figure 21.2 AES Encryption and Decryption

Similarly, the first four bytes of the expanded key, which form a word, occupy the
first column of the w matrix.
The following comments give some insight into AES:

1. The key that is provided as input is expanded into an array of forty-four
32-bit words, w[i]. Four distinct words (128 bits) serve as a round key for
each round.

2. Four different stages are used, one of permutation and three of substitution:

21.2 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 709

State [I I I I T T T I I I I I I I I]

subbytes [S] [s] [s] [s] [s] [s] [s] [s] [s] [s] [8] OS] [S] [s] [s] [

State | I I I I I I I I I I [[I I I]
State | I I I I I I I I I I [[I I I]
Nt/ N N N
MixColumns ™| C ™] [~ | [M |
State [I I \ﬁ I ¢_|l I \ﬁ I ¢_|l I \ﬁ I ¢_|l I \|_¢|
oo D D B D W D BB D D D W B

State [I I I I I I I I I I I I I I I]

Figure 21.3 AES Encryption Round

* Substitute bytes: Uses a table, referred to as an S-box,! to perform a byte-
by-byte substitution of the block

o Shift rows: A simple permutation that is performed row by row

¢ Mix columns: A substitution that alters each byte in a column as a function
of all of the bytes in the column

* Add round key: A simple bitwise XOR of the current block with a portion
of the expanded key

3. The structure is quite simple. For both encryption and decryption, the cipher
begins with an Add Round Key stage, followed by nine rounds that each
includes all four stages, followed by a tenth round of three stages. Figure 21.3
depicts the structure of a full encryption round.

4. Only the Add Round Key stage makes use of the key. For this reason, the
cipher begins and ends with an Add Round Key stage. Any other stage,
applied at the beginning or end, is reversible without knowledge of the key
and so would add no security.

IThe term S-box, or substitution box, is commonly used in the description of symmetric ciphers to refer
to a table used for a table-lookup type of substitution mechanism.

710

CHAPTER 21 / NETWORK SECURITY

S.

The Add Round Key stage by itself would not be formidable. The other three
stages together scramble the bits, but by themselves would provide no security
because they do not use the key. We can view the cipher as alternating operations
of XOR encryption (Add Round Key) of a block, followed by scrambling of the
block (the other three stages), followed by XOR encryption, and so on. This
scheme is both efficient and highly secure.

Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix
Columns stages, an inverse function is used in the decryption algorithm. For the
Add Round Key stage, the inverse is achieved by XORing the same round key to
the block, using the result that A A @ B = B.

As with most block ciphers, the decryption algorithm makes use of the expanded
key in reverse order. However, the decryption algorithm is not identical to the
encryption algorithm. This is a consequence of the particular structure of AES.

Once it is established that all four stages are reversible, it is easy to verify that
decryption does recover the plaintext. Figure 21.2 lays out encryption and
decryption going in opposite vertical directions. At each horizontal point (e.g., the
dashed line in the figure), State is the same for both encryption and decryption.
The final round of both encryption and decryption consists of only three

stages. Again, this is a consequence of the particular structure of AES and is
required to make the cipher reversible.

Location of Encryption Devices

The most powerful, and most common, approach to countering the threats to net-
work security is encryption. In using encryption, we need to decide what to
encrypt and where the encryption gear should be located. As Figure 21.4

‘ = End-to-end encryption device

Packet-switching
network

O = Link encryption device

PSN =

Packet-switching node

Figure 21.4 Encryption across a Packet-Switching Network

21.2 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 711

indicates, there are two fundamental alternatives: link encryption and end-to-end
encryption.

With link encryption, each vulnerable communications link is equipped on
both ends with an encryption device. Thus, all traffic over all communications links
is secured. Although this requires a lot of encryption devices in a large network, it
provides a high level of security. One disadvantage of this approach is that the mes-
sage must be decrypted each time it enters a packet switch; this is necessary because
the switch must read the address (virtual circuit number) in the packet header to
route the packet. Thus, the message is vulnerable at each switch. If this is a public
packet-switching network, the user has no control over the security of the nodes.

With end-to-end encryption, the encryption process is carried out at the two
end systems. The source host or terminal encrypts the data. The data, in encrypted
form, are then transmitted unaltered across the network to the destination terminal
or host. The destination shares a key with the source and so is able to decrypt the
data. This approach would seem to secure the transmission against attacks on the
network links or switches. There is, however, still a weak spot.

Consider the following situation. A host connects to a frame relay network, sets
up a logical connection to another host, and is prepared to transfer data to that other
host using end-to-end encryption. Data are transmitted over such a network in the
form of frames, or packets, consisting of a header and some user data. What part of
each packet will the host encrypt? Suppose that the host encrypts the entire packet,
including the header. This will not work because, remember, only the other host can
perform the decryption. Each frame relay node will receive an encrypted packet and
be unable to read the header. Therefore, it will not be able to route the packet. It fol-
lows that the host may only encrypt the user data portion of the packet and must
leave the header in the clear, so that the network can read it.

Thus, with end-to-end encryption, the user data are secure. However, the
traffic pattern is not, because packet headers are transmitted in the clear. To
achieve greater security, both link and end-to-end encryption are needed, as is
shown in Figure 21.4.

To summarize, when both forms are employed, the host encrypts the user data
portion of a packet using an end-to-end encryption key. The entire packet is then
encrypted using a link encryption key. As the packet traverses the network, each
switch decrypts the packet using a link encryption key to read the header and then
encrypts the entire packet again for sending it out on the next link. Now the entire
packet is secure except for the time that the packet is actually in the memory of a
packet switch, at which time the packet header is in the clear.

Key Distribution

For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system rests
with the key distribution technique, a term that refers to the means of delivering a
key to two parties that wish to exchange data without allowing others to see the key.
Key distribution can be achieved in a number of ways. For two parties A and B,

712

CHAPTER 21 / NETWORK SECURITY

1. A key could be selected by A and physically delivered to B.

2. A third party could select the key and physically deliver it to A and B.

3. If A and B have previously and recently used a key, one party could transmit the
new key to the other, encrypted using the old key.

4. If A and B each have an encrypted connection to a third party C, C could
deliver a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a
reasonable requirement, because each link encryption device is only going to be
exchanging data with its partner on the other end of the link. However, for end-to-
end encryption, manual delivery is awkward. In a distributed system, any given host
or terminal may need to engage in exchanges with many other hosts and terminals
over time. Thus, each device needs a number of keys, supplied dynamically. The
problem is especially difficult in a wide area distributed system.

Option 3 is a possibility for either link encryption or end-to-end encryption, but
if an attacker ever succeeds in gaining access to one key, then all subsequent keys are
revealed. Even if frequent changes are made to the link encryption keys, these should
be done manually. To provide keys for end-to-end encryption, option 4 is preferable.

Figure 21.5 illustrates an implementation of option 4 for end-to-end encryp-
tion. In the figure, link encryption is ignored. This can be added, or not, as required.
For this scheme, two kinds of keys are identified:

* Session key: When two end systems (hosts, terminals, etc.) wish to communi-
cate, they establish a logical connection (e.g., virtual circuit). For the duration
of that logical connection, all user data are encrypted with a one-time session
key. At the conclusion of the session, or connection, the session key is

destroyed.
Key
1. Host sends packet requesting connection. distribution
2. Security service buffers packet; asks center

KDC for session key.
3. KDC distributes session key to both hosts.
4. Buffered packet transmitted.

1
|
i
I
'
1
1
'
I
|
!
1
1
i
i
,

(Application) (Application)

v ’ .
Security Y- =L L > Security
7 service /

.service 1
®© Host

N

HOST

Network

Figure 21.5 Automatic Key Distribution for Connection-Oriented Protocol

21.3 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 713

* Permanent key: A permanent key is a key used between entities for the pur-
pose of distributing session keys.

The configuration consists of the following elements:

* Key distribution center: The key distribution center determines which systems
are allowed to communicate with each other. When permission is granted for
two systems to establish a connection, the key distribution center provides a
one-time session key for that connection.

¢ Security service module (SSM): This module, which may consist of functional-
ity at one protocol layer, performs end-to-end encryption and obtains session
keys on behalf of users.

The steps involved in establishing a connection are shown in the figure. When
one host wishes to set up a connection to another host, it transmits a connection-
request packet (step 1). The SSM saves that packet and applies to the KDC for permis-
sion to establish the connection (step 2). The communication between the SSM and the
KDC is encrypted using a master key shared only by this SSM and the KDC. If the
KDC approves the connection request, it generates the session key and delivers it to
the two appropriate SSMs, using a unique permanent key for each SSM (step 3). The
requesting SSM can now release the connection request packet, and a connection is set
up between the two end systems (step 4). All user data exchanged between the two end
systems are encrypted by their respective SSMs using the one-time session key.

The automated key distribution approach provides the flexibility and dynamic
characteristics needed to allow a number of terminal users to access a number of
hosts and for the hosts to exchange data with each other.

Another approach to key distribution uses public-key encryption, which is dis-
cussed in Section 21.4.

Traffic Padding

We mentioned that, in some cases, users are concerned about security from traffic
analysis. With the use of link encryption, packet headers are encrypted, reducing the
opportunity for traffic analysis. However, it is still possible in those circumstances
for an attacker to assess the amount of traffic on a network and to observe the
amount of traffic entering and leaving each end system. An effective countermea-
sure to this attack is traffic padding.

Traffic padding is a function that produces ciphertext output continuously,
even in the absence of plaintext. A continuous random data stream is generated.
When plaintext is available, it is encrypted and transmitted. When input plaintext is
not present, the random data are encrypted and transmitted. This makes it impossi-
ble for an attacker to distinguish between true data flow and noise and therefore
impossible to deduce the amount of traffic.

21.3 MESSAGE AUTHENTICATION AND HASH FUNCTIONS

Encryption protects against passive attack (eavesdropping). A different require-
ment is to protect against active attack (falsification of data and transactions). Pro-
tection against such attacks is known as message authentication.

714 CHAPTER 21 / NETWORK SECURITY

Approaches to Message Authentication

A message, file, document, or other collection of data is said to be authentic when it
is genuine and came from its alleged source. Message authentication is a procedure
that allows communicating parties to verify that received messages are authentic.
The two important aspects are to verify that the contents of the message have not
been altered and that the source is authentic. We may also wish to verify a message’s
timeliness (it has not been artificially delayed and replayed) and sequence relative
to other messages flowing between two parties.

Authentication Using Symmetric Encryption It is possible to perform
authentication simply by the use of symmetric encryption. If we assume that only
the sender and receiver share a key (which is as it should be), then only the genuine
sender would be able successfully to encrypt a message for the other participant.
Furthermore, if the message includes an error detection code and a sequence num-
ber, the receiver is assured that no alterations have been made and that sequencing
is proper. If the message also includes a timestamp, the receiver is assured that the
message has not been delayed beyond that normally expected for network transit.

Message Authentication without Message Encryption In this section, we
examine several approaches to message authentication that do not rely on message
encryption. In all of these approaches, an authentication tag is generated and appended
to each message for transmission. The message itself is not encrypted and can be read
at the destination independent of the authentication function at the destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. Because symmetric encryption will provide
authentication, and because it is widely used with readily available products, why
not simply use such an approach, which provides both confidentiality and authenti-
cation? [DAVI89] suggests three situations in which message authentication without
confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to
a number of destinations. For example, notification to users that the network is
now unavailable or an alarm signal in a control center. It is cheaper and more
reliable to have only one destination responsible for monitoring authenticity.
Thus, the message must be broadcast in plaintext with an associated message
authentication tag. The responsible system performs authentication. If a viola-
tion occurs, the other destination systems are alerted by a general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is car-
ried out on a selective basis, with messages chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message
authentication tag were attached to the program, it could be checked when-
ever assurance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting secu-
rity requirements.

21.3 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 715

Message
Transmit
—_—
} —> Compare
MAC
algorithm,
MAC
K

Figure 21.6 Message Authentication Using a Message Authentication Code
(MAC)

Message Authentication Code One authentication technique involves the use
of a secret key to generate a small block of data, known as a message authentication
code, that is appended to the message. This technique assumes that two communicat-
ing parties, say A and B, share a common secret key K 45. When A has a message M to
send to B, it calculates the message authentication code as a function of the message
and the key: MAC,; = F(K 45, M). The message plus code are transmitted to the
intended recipient. The recipient performs the same calculation on the received mes-
sage, using the same secret key, to generate a new message authentication code. The
received code is compared to the calculated code (Figure 21.6). If we assume that only
the receiver and the sender know the identity of the secret key, and if the received
code matches the calculated code, then

1. The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

2. The receiver is assured that the message is from the alleged sender. Because no one
else knows the secret key, no one else could prepare a message with a proper code.

3. If the message includes a sequence number (such as is used with X.25, HDLC,

and TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The National
Bureau of Standards, in its publication DES Modes of Operation, recommends the

716 CHAPTER 21 / NETWORK SECURITY

use of DES. DES is used to generate an encrypted version of the message, and the
last number of bits of ciphertext are used as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. It turns
out that because of the mathematical properties of the authentication function, it is
less vulnerable to being broken than encryption.

One-Way Hash Function A variation on the message authentication code that
has received much attention recently is the one-way hash function. As with the mes-
sage authentication code, a hash function accepts a variable-size message M as input
and produces a fixed-size message digest H(M) as output. Unlike the MAC, a hash
function does not also take a secret key as input. To authenticate a message, the mes-
sage digest is sent with the message in such a way that the message digest is authentic.

Figure 21.7 illustrates three ways in which the message can be authenticated.
The message digest can be encrypted using symmetric encryption (part a); if it is
assumed that only the sender and receiver share the encryption key, then authentic-
ity is assured. The message digest can also be encrypted using public-key encryption
(part b); this is explained in Section 21.4. The public-key approach has two advan-
tages: it provides a digital signature as well as message authentication, and it does
not require the distribution of keys to communicating parties.

These two approaches have an advantage over approaches that encrypt the
entire message in that less computation is required. Nevertheless, there has been
interest in developing a technique that avoids encryption altogether. Several rea-
sons for this interest are pointed out in [TSUD92]:

e Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

e Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

e Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

e Encryption algorithms may be covered by patents. Some encryption algo-
rithms, such as the RSA public-key algorithm, are patented and must be
licensed, adding a cost.

e Encryption algorithms may be subject to export control.

Figure 21.7c shows a technique that uses a hash function but no encryption for
message authentication. This technique assumes that two communicating parties,
say A and B, share a common secret value S45. When A has a message to send to B,
it calculates the hash function over the concatenation of the secret value and the
message: MD,, = H(S 45|M).2 It then sends [M|MD,,] to B. Because B possesses
S 4p, it can recompute H(S 45| M) and verify MD,,. Because the secret value itself is
not sent, it is not possible for an attacker to modify an intercepted message. As long

2 ” denotes concatenation.

21.3 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 717

~——— Source A ———> ~—— Destination B ——>

—@—_]

Message
Message
Message

Compare

(a) Using conventional encryption

=

Message
Message

Message

Compare
PR, PU,

(b) Using public-key encryption

o]
7]

N

Message
Message

Message

Compare

(c) Using secret value

Figure 21.7 Message Authentication Using a One-Way Hash Function

as the secret value remains secret, it is also not possible for an attacker to generate a
false message.

This third technique, using a shared secret value, is the one adopted for IP
security; it has also been specified for SNMPv3, discussed in Chapter 22.

Secure Hash Functions

The one-way hash function, or secure hash function, is important not only in
message authentication but in digital signatures. In this section, we begin with

718 CHAPTER 21 / NETWORK SECURITY

a discussion of requirements for a secure hash function. Then we look at one of
the most important hash functions, SHA.

Hash Function Requirements The purpose of a hash function is to produce a
“fingerprint” of a file, message, or other block of data. To be useful for message
authentication, a hash function H must have the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4. For any given code h, it is computationally infeasible to find x such that

H(x) = h.
5. For any given block x, it is computationally infeasible to find y # x with
H(y) = H(x).

6. Tt is computationally infeasible to find any pair (x, y) such that H(x) = H(y).

The first three properties are requirements for the practical application of a
hash function to message authentication.

The fourth property is the one-way property: It is easy to generate a code
given a message, but virtually impossible to generate a message given a code.
This property is important if the authentication technique involves the use of a
secret value (Figure 21.7c). The secret value itself is not sent; however, if the
hash function is not one way, an attacker can easily discover the secret value: If
the attacker can observe or intercept a transmission, the attacker obtains the
message M and the hash code MD,, = H(S45|M). The attacker then inverts the
hash function to obtain S,z|M = H_l(MDM). Because the attacker now has
both M and S 45||M, it is a trivial matter to recover S 5.

The fifth property guarantees that it is impossible to find an alternative mes-
sage with the same hash value as a given message. This prevents forgery when an
encrypted hash code is used (Figures 21.7a and b). If this property were not true, an
attacker would be capable of the following sequence: First, observe or intercept a
message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; third, generate an alternate message with the same hash code.

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it is
referred to as a strong hash function. The sixth property protects against a sophisti-
cated class of attack known as the birthday attack.’

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

The SHA Secure Hash Function

The Secure Hash Algorithm (SHA) was developed by NIST and published as a fed-
eral information processing standard (FIPS 180) in 1993; a revised version was
issued as FIPS 180-1 in 1995 and is generally referred to as SHA-1.

3See [STALO6] for a discussion of birthday attacks.

21.3 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 719

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a new ver-
sion of the standard, FIPS 180-2, that defined three new versions of SHA, with hash
value lengths of 256,384, and 512 bits, known as SHA-256, SHA-384, and SHA-512.
These new versions have the same underlying structure and use the same types of
modular arithmetic and logical binary operations as SHA-1. In 2005, NIST
announced the intention to phase out approval of SHA-1 and move to a reliance on
the other SHA versions by 2010. Shortly thereafter, a research team described an
attack in which two separate messages could be found that deliver the same SHA-1
hash using 2% operations, far fewer than the 2% operations previously thought
needed to find a collision with an SHA-1 hash [WANGO5]. This result should hasten
the transition to the other versions of SHA.

In this section, we provide a description of SHA-512. The other versions are
quite similar. The algorithm takes as input a message with a maximum length of less
than 2'?® bits and produces as output a 512-bit message digest. The input is
processed in 1024-bit blocks. Figure 21.8 depicts the overall processing of a message
to produce a digest. The processing consists of the following steps:

Step 1: Append padding bits. The message is padded so that its length is congruent
to 896 modulo 1024 [length mod 1024 = 896). Padding is always added, even if
the message is already of the desired length. Thus, the number of padding bits is in
the range of 1 to 1024. The padding consists of a single 1-bit followed by the neces-
sary number of 0-bits.

Step 2: Append length. A block of 128 bits is appended to the message. This block is
treated as an unsigned 128-bit integer (most significant byte first) and contains the
length of the original message (before the padding) The inclusion of a length value
makes more difficult a kind of attack known as a padding attack [TSUD92].

The outcome of the first two steps yields a message that is an integer multiple
of 1024 bits in length. In Figure 21.8, the expanded message is represented as the

N % 1024 bits
L bits ~128 bits>
Message | 100...0 | L
<—— 1024 bits ——+<—— 1024 bits —> * <—— 1024 bits —>

+ = word-by-word addition mod 2%

Figure 21.8 Message Digest Generation Using SHA-512

720 CHAPTER 21 / NETWORK SECURITY

sequence of 1024-bit blocks M, M,,..., My, so that the total length of the
expanded message is N X 1024 bits.

Step 3: Initialize MD buffer. A 512-bit buffer is used to hold intermediate and final
results of the hash function.

Step 4: Process message in 512-bit (16-word) blocks. The heart of the algorithm is a
module that consists of 80 rounds of processing. The 80 rounds have the same struc-
ture but vary some constants and logical functions.

Step 5: Output. After all N 1024-bit blocks have been processed, the output from
the Nth stage is the 512-bit message digest.

The SHA-512 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic function F
produces results that are well mixed; that is, it is unlikely that two messages chosen
at random, even if they exhibit similar regularities, will have the same hash code.
Unless there is some hidden weakness in SHA-512, which has not so far been pub-
lished, the difficulty of coming up with two messages having the same message
digest is on the order of 2% operations, while the difficulty of finding a message
with a given digest is on the order of 212 operations.

21.4 PUBLIC-KEY ENCRYPTION AND DIGITAL SIGNATURES

Of equal importance to symmetric encryption is public-key encryption, which finds
use in message authentication and key distribution. This section looks first at the
basic concept of public-key encryption, followed by a discussion of digital signa-
tures. Then we discuss the most widely used public-key algorithm: RSA. We then
look at the problem of key distribution.

Public-Key Encryption

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76],is the first truly revolutionary advance in encryption in literally thousands
of years. For one thing, public-key algorithms are based on mathematical functions
rather than on simple operations on bit patterns. More important, public-key cryp-
tography is asymmetric, involving the use of two separate keys, in contrast to sym-
metric encryption, which uses only one key. The use of two keys has profound
consequences in the areas of confidentiality, key distribution, and authentication.
Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than symmetric encryption. In fact, the security of any encryp-
tion scheme depends on (1) the length of the key and (2) the computational work
involved in breaking a cipher. There is nothing in principle about either symmetric
or public-key encryption that makes one superior to another from the viewpoint of
resisting cryptanalysis. A second misconception is that public-key encryption is a
general-purpose technique that has made symmetric encryption obsolete. On the
contrary, because of the computational overhead of current public-key encryption
schemes, there seems no foreseeable likelihood that symmetric encryption will be

21.4 / PUBLIC-KEY ENCRYPTION AND DIGITAL SIGNATURES 721

Bobs's
public key

0]
Joy Ted ?
Mike Alice
Alice's public Alice's private
P PR
U key “ key
Transmitted = =
X T ciphertext DI[PR,, Y]| =——
—— O —— —_
Ll Y = E[PU,, X] | ——
- o - ? Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., RSA) (reverse of encryption
algorithm)
(a) Encryption
Alice's
public key
[
ﬁb Joy Ted
Mike Bob
PR, | Bob's private PU, Bob's public
key key
Transmitted = ———-
I ciphertext D[PU,, Y]| =—=—
Q — 5
Plaintext Plaintext
input Encryption algorithm Decryption algorithm output
(e.g., RSA) (reverse of encryption
algorithm)
(b) Authentication

Figure 21.9 Public-Key Cryptography

abandoned. Finally, there is a feeling that key distribution is trivial when using pub-
lic-key encryption, compared to the rather cumbersome handshaking involved with
key distribution centers for symmetric encryption. In fact, some form of protocol is
needed, often involving a central agent, and the procedures involved are no simpler
or any more efficient than those required for symmetric encryption.

A public-key encryption scheme has six ingredients (Figure 21.9):

722

CHAPTER 21 / NETWORK SECURITY

¢ Plaintext: This is the readable message or data that is fed into the algorithm as
input.

* Encryption algorithm: The encryption algorithm performs various transfor-
mations on the plaintext.

¢ Public and private key: This is a pair of keys that have been selected so that if
one is used for encryption the other is used for decryption. The exact transfor-
mations performed by the encryption algorithm depend on the public or pri-
vate key that is provided as input.

 Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

¢ Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to use,
while the private key is known only to its owner. A general-purpose public-key crypto-
graphic algorithm relies on one key for encryption and a different but related key for
decryption. Furthermore, these algorithms have the following important characteristics:

e [t is computationally infeasible to determine the decryption key given only
knowledge of the cryptographic algorithm and the encryption key.

e For most public-key schemes, either of the two related keys can be used for
encryption, with the other used for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private. As Figure 21.9 suggests,
each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message using
Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s
private key.

With this approach, all participants have access to public keys, and private
keys are generated locally by each participant and therefore need never be distrib-
uted. As long as a user protects his or her private key, incoming communication is
secure. At any time, a user can change the private key and publish the companion
public key to replace the old public key.

Digital Signature

Public-key encryption can be used in another way, as illustrated in Figure 21.9b. Suppose
that Bob wants to send a message to Alice and, although it is not important that the mes-
sage be kept secret, he wants Alice to be certain that the message is indeed from him. In

21.4 / PUBLIC-KEY ENCRYPTION AND DIGITAL SIGNATURES 723

this case Bob uses his own private key to encrypt the message. When Alice receives the
ciphertext, she finds that she can decrypt it with Bob’s public key, thus proving that the
message must have been encrypted by Bob. No one else has Bob’s private key and
therefore no one else could have created a ciphertext that could be decrypted with
Bob’s public key. Therefore, the entire encrypted message serves as a digital signature.
In addition, it is impossible to alter the message without access to Bob’s private key, so
the message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although validat-
ing both author and contents, requires a great deal of storage. Each document must be
kept in plaintext to be used for practical purposes. A copy also must be stored in cipher-
text so that the origin and contents can be verified in case of a dispute. A more efficient
way of achieving the same results is to encrypt a small block of bits that is a function of
the document. Such a block, called an authenticator, must have the property that it is
infeasible to change the document without changing the authenticator. If the authenti-
cator is encrypted with the sender’s private key, it serves as a signature that verifies ori-
gin, content, and sequencing. A secure hash code such as SHA-1 can serve this function.

It is important to emphasize that the digital signature does not provide confi-
dentiality. That is, the message being sent is safe from alteration but not safe from
eavesdropping. This is obvious in the case of a signature based on a portion of the
message, because the rest of the message is transmitted in the clear. Even in the case
of complete encryption, there is no protection of confidentiality because any
observer can decrypt the message by using the sender’s public key.

The RSA Public-Key Encryption Algorithm

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since that time reigned supreme as the only widely accepted and imple-
mented approach to public-key encryption. RSA is a block cipher in which the
plaintext and ciphertext are integers between 0 and n — 1 for some n.

Encryption and decryption are of the following form, for some plaintext
block M and ciphertext block C:

C = M°modn
M =C'modn = (M¢?modn = M* mod n
Both sender and receiver must know the values of n and e, and only the
receiver knows the value of d. This is a public-key encryption algorithm with a pub-

lic key of PU = {e, n} and a private key of PR = {d, n}. For this algorithm to be
satisfactory for public-key encryption, the following requirements must be met:

1. Itis possible to find values of ¢, d, n such that M ““modn = M forall M < n.
2. Ttis relatively easy to calculate M¢ and C for all values of M < n.

3. Itis infeasible to determine d given e and n.

The first two requirements are easily met. The third requirement can be met
for large values of e and n.

Figure 21.10 summarizes the RSA algorithm. Begin by selecting two prime num-
bers, p and ¢, and calculating their product, , which is the modulus for encryption and

724 CHAPTER 21 / NETWORK SECURITY

Key Generation
Select p, g p and g both prime, p # ¢
Calculate n = p X g
Calculate p(n) = (p —)(g — 1)
Select integer e ged(p(n), e) = 1; 1 < e < ¢p(n)
Calculate d de mod ¢p(n) = 1
Public key PU = {e, n}
Private key PR = {d, n}
Encryption
Plaintext: M<n
Ciphertext: C = M* (mod n)
Decryption
Ciphertext: C
Plaintext: M = C%(mod n)

Figure 21.10 The RSA Algorithm

decryption. Next, we need the quantity ¢(n) referred to as the Euler totient of n, which
is the number of positive integers less than n and relatively prime to n.* Then select an
integer e that is relatively prime to ¢(n) [i.e., the greatest common divisor of e and
¢(n) is 1]. Finally, calculate d such that de mod ¢(n) = 1. It can be shown that d and e
have the desired properties.

Suppose that user A has published its public key and that user B wishes to
send the message M to A. Then B calculates C = M*° (mod n) and transmits C. On
receipt of this ciphertext, user A decrypts by calculating M = C¢ (mod n).

An example, from [SING99], is shown in Figure 21.11. For this example, the
keys were generated as follows:

1. Select two prime numbers, p = 17 and g = 11.
Calculate n = pg = 17 X 11 = 187.
Calculate p(n) = (p — 1)(¢ — 1) = 16 X 10 = 160.

Select e such that e is relatively prime to ¢(n) = 160 and less than ¢(n); we
choose e = 7.

bl e

*It can be shown that when # is a product of two primes, pq, then ¢(n) = (p — 1)(q — 1).

21.4 / PUBLIC-KEY ENCRYPTION AND DIGITAL SIGNATURES 725

Encryption Decryption
Plaintext Ciphertext Plaintext
aintex 1 aintex
88— > SSQimod= 1 11<T mod{87)=88 ——> 88

|/ |

KU =17,187 KR = 23,187
Figure 21.11 Example of RSA Algorithm

5. Determine d such that de mod 160 = 1 and d < 160. The correct value is
d = 23, because 23 X 7 = 161 = 10 X 160 + 1.

The resulting keys are public key PU = {7,187} and private key

PR = {23,187}. The example shows the use of these keys for a plaintext input of
M = 88. For encryption, we need to calculate C = 88’ mod 187. Exploiting the
properties of modular arithmetic, we can do this as follows:

887 mod 187 = [(88* mod 187) X (882> mod 187) X (88! mod 187)] mod 187

88' mod 187 = 88

88% mod 187 = 7744 mod 187 = 77

88*mod 187 = 59,969,536 mod 187 = 132

88’ mod 187 = (88 X 77 X 132) mod 187 = 894,432 mod 187 = 11
For decryption, we calculate M = 11> mod 187:

11% mod 187 = [(11' mod 187) X (11> mod 187) X (11* mod 187) x
(118 mod 187) X (11 mod 187)] mod 187
11" mod 187 = 11
11 mod 187 = 121
11* mod 187 = 14,641 mod 187 = 55
118 mod 187 = 214,358,881 mod 187 = 33
11”2 mod 187 = (11 X 121 X 55 X 33 X 33) mod 187 = 79,720,245 mod 187 = 88

There are two possible approaches to defeating the RSA algorithm. The first is
the brute-force approach: Try all possible private keys. Thus, the larger the number
of bits in e and d, the more secure the algorithm. However, because the calculations
involved, both in key generation and in encryption/decryption, are complex, the
larger the size of the key, the slower the system will run.

Most discussions of the cryptanalysis of RSA have focused on the task of fac-
toring » into its two prime factors. For a large n with large prime factors, factoring is a
hard problem, but not as hard as it used to be. A striking illustration of this is the fol-
lowing. In 1977, the three inventors of RSA dared Scientific American readers to
decode a cipher they printed in Martin Gardner’s “Mathematical Games” column.

726

CHAPTER 21 / NETWORK SECURITY

They offered a $100 reward for the return of a plaintext sentence, an event they pre-
dicted might not occur for some 40 quadrillion years. In April of 1994, a group work-
ing over the Internet and using over 1600 computers claimed the prize after only
eight months of work [LEUT94]. This challenge used a public-key size (length of n)
of 129 decimal digits, or around 428 bits. This result does not invalidate the use of
RSA; it simply means that larger key sizes must be used. Currently, a 1024-bit key size
(about 300 decimal digits) is considered strong enough for virtually all applications.

Key Management

With symmetric encryption, a fundamental requirement for two parties to communi-
cate securely is that they share a secret key. Suppose Bob wants to create a messaging
application that will enable him to exchange e-mail securely with anyone who has
access to the Internet or to some other network that the two of them share. Suppose
Bob wants to do this using only symmetric encryption. With symmetric encryption,
Bob and his correspondent, say, Alice, must come up with a way to share a unique
secret key that no one else knows. How are they going to do that? If Alice is in the
next room from Bob, Bob could generate a key and write it down on a piece of paper
or store it on a diskette and hand it to Alice. But if Alice is on the other side of the
continent or the world, what can Bob do? Well, he could encrypt this key using sym-
metric encryption and e-mail it to Alice, but this means that Bob and Alice must
share a secret key to encrypt this new secret key. Furthermore, Bob and everyone
else who uses this new e-mail package faces the same problem with every potential
correspondent: Each pair of correspondents must share a unique secret key.

How to distribute secret keys securely is the most difficult problem for sym-
metric encryption. This problem is wiped away with public-key encryption by the
simple fact that the private key is never distributed. If Bob wants to correspond with
Alice and other people, he generates a single pair of keys, one private and one pub-
lic. He keeps the private key secure and broadcasts the public key to all and sundry.
If Alice does the same, then Bob has Alice’s public key, Alice has Bob’s public key,
and they can now communicate securely. When Bob wishes to communicate with
Alice, Bob can do the following:

1. Prepare a message.

2. Encrypt that message using symmetric encryption with a one-time symmetric
session key.

3. Encrypt the session key using public-key encryption with Alice’s public key.
4. Attach the encrypted session key to the message and send it to Alice.

Only Alice is capable of decrypting the session key and therefore of recover-
ing the original message.

It is only fair to point out, however, that we have replaced one problem with
another. Alice’s private key is secure because she need never reveal it; however,
Bob must be sure that the public key with Alice’s name written all over it is in
fact Alice’s public key. Someone else could have broadcast a public key and said
it was Alice’s.

The solution to this problem is the public-key certificate. In essence, a cer-
tificate consists of a public key plus a User ID of the key owner, with the whole

21.5 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 727

Unsigned certificate:
contains user ID,

user's public key G e hash
enerate has

code of unsigned
certificate

(=

Encrypt hash code
‘ y E | with CA's private key
2 to form signature

[

Signed certificate:
Recipient can verity
signature using CA's
public key.

Figure 21.12 Public-Key Certificate Use

block signed by a trusted third party. Typically, the third party is a certificate
authority (CA) that is trusted by the user community, such as a government
agency or a financial institution. A user can present his or her public key to the
authority in a secure manner and obtain a certificate. The user can then publish
the certificate. Anyone needing this user’s public key can obtain the certificate
and verify that it is valid by way of the attached trusted signature. Figure 21.12
illustrates the process.

21.5 SECURE SOCKET LAYER AND TRANSPORT

LAYER SECURITY

One of the most widely used security services is the Secure Sockets Layer (SSL)
and the follow-on Internet standard known as Transport Layer Security (TLS),
the latter defined in RFC 2246. SSL is a general-purpose service implemented as
a set of protocols that rely on TCP. At this level, there are two implementation
choices. For full generality, SSL (or TLS) could be provided as part of the under-
lying protocol suite and therefore be transparent to applications. Alternatively,
SSL can be embedded in specific packages. For example, Netscape and Microsoft
Explorer browsers come equipped with SSL, and most Web servers have imple-
mented the protocol.
This section discusses SSLv3. Only minor changes are found in TLS.

728 CHAPTER 21 / NETWORK SECURITY

SSL SSL Change
Handshake | Cipher Spec | SSLAlert | prpp
Protocol
Protocol Protocol
SSL Record Protocol
TCP
1P

Figure 21.13 SSL Protocol Stack

SSL Architecture

SSL is designed to make use of TCP to provide a reliable end-to-end secure service. SSL
is not a single protocol but rather two layers of protocols, as illustrated in Figure 21.13.

The SSL Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which pro-
vides the transfer service for Web client/server interaction, can operate on top of SSL.
Three higher-layer protocols are defined as part of SSL: the Handshake Protocol, the
Change Cipher Spec Protocol, and the Alert Protocol. These SSL-specific protocols
are used in the management of SSL exchanges and are examined later in this section.

Two important SSL concepts are the SSL session and the SSL connection,
which are defined in the specification as follows:

e Connection: A connection is a transport (in the OSI layering model defini-
tion) that provides a suitable type of service. For SSL, such connections are
peer-to-peer relationships. The connections are transient. Every connection is
associated with one session.

* Session: An SSL session is an association between a client and a server. Ses-
sions are created by the Handshake Protocol. Sessions define a set of crypto-
graphic security parameters, which can be shared among multiple connections.
Sessions are used to avoid the expensive negotiation of new security parame-
ters for each connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

SSL Record Protocol

The SSL Record Protocol provides two services for SSL connections:

¢ Confidentiality: The Handshake Protocol defines a shared secret key that is
used for symmetric encryption of SSL payloads.

* Message integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

21.5 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 729

Application data

Fragment

Compress

Add MAC

Encrypt

Append SSL
record header

Figure 21.14 SSL Record Protocol Operation

Figure 21.14 indicates the overall operation of the SSL Record Protocol. The
first step is fragmentation. Each upper-layer message is fragmented into blocks of
24 bytes (16,384 bytes) or less. Next, compression is optionally applied. The next
step in processing is to compute a message authentication code over the compressed
data. Next, the compressed message plus the MAC are encrypted using symmetric
encryption.

The final step of SSL Record Protocol processing is to prepend a header, con-
sisting of the following fields:

¢ Content Type (8 bits): The higher-layer protocol used to process the enclosed
fragment.

° Major Version (8 bits): Indicates major version of SSL in use. For SSLv3, the
value is 3.

e Minor Version (8 bits): Indicates minor version in use. For SSLv3, the value
is 0.
e Compressed Length (16 bits): The length in bytes of the plaintext fragment (or

compressed fragment if compression is used). The maximum value is
21+ 2048.

The content types that have been defined are change_cipher_spec, alert, hand-
shake, and application_data. The first three are the SSL-specific protocols, discussed
next. Note that no distinction is made among the various applications (e.g., HTTP)
that might use SSL; the content of the data created by such applications is opaque
to SSL.

The Record Protocol then transmits the resulting unit in a TCP segment.
Received data are decrypted, verified, decompressed, and reassembled and then
delivered to higher-level users.

730 CHAPTER 21 / NETWORK SECURITY

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the three SSL-specific protocols that use
the SSL Record Protocol, and it is the simplest. This protocol consists of a single
message, which consists of a single byte with the value 1. The sole purpose of this
message is to cause the pending state to be copied into the current state, which
updates the cipher suite to be used on this connection.

Alert Protocol

The Alert Protocol is used to convey SSL-related alerts to the peer entity. As with
other applications that use SSL, alert messages are compressed and encrypted, as
specified by the current state.

Each message in this protocol consists of two bytes. The first byte takes the
value warning(1) or fatal(2) to convey the severity of the message. If the level is
fatal, SSL immediately terminates the connection. Other connections on the same
session may continue, but no new connections on this session may be established.
The second byte contains a code that indicates the specific alert. An example of a
fatal alert is an incorrect MAC. An example of a nonfatal alert is a close_notify mes-
sage, which notifies the recipient that the sender will not send any more messages on
this connection.

Handshake Protocol

The most complex part of SSL is the Handshake Protocol. This protocol allows
the server and client to authenticate each other and to negotiate an encryption
and MAC algorithm and cryptographic keys to be used to protect data sent in an
SSL record. The Handshake Protocol is used before any application data is
transmitted.

The Handshake Protocol consists of a series of messages exchanged by client
and server. Figure 21.15 shows the initial exchange needed to establish a logical
connection between client and server. The exchange can be viewed as having four
phases.

Phase 1 is used to initiate a logical connection and to establish the security
capabilities that will be associated with it. The exchange is initiated by the client,
which sends a client_hello message with the following parameters:

¢ Version: The highest SSL version understood by the client.

* Random: A client-generated random structure, consisting of a 32-bit time-
stamp and 28 bytes generated by a secure random number generator. These
values are used during key exchange to prevent replay attacks.

e Session ID: A variable-length session identifier. A nonzero value indicates
that the client wishes to update the parameters of an existing connection or
create a new connection on this session. A zero value indicates that the client
wishes to establish a new connection on a new session.

e CipherSuite: This is a list that contains the combinations of cryptographic
algorithms supported by the client, in decreasing order of preference. Each
element of the list (each cipher suite) defines both a key exchange algorithm
and a CipherSpec.

21.5 / SECURE SOCKET LAYER AND TRANSPORT LAYER SECURITY 731

Client Server

C"en
Lhell Phase 1
Establish security capabilities, including

protocol version, session ID, cipher suite,

hello compression method, and initial random
gerver_’
numbers.

ce!'ﬁﬁcme
e
exc\\ﬁ“g
serve\‘,“eyf Phase 2
Server may send certificate, key exchange,
tificate t‘eq\l"'st and request certificate. Server signals end
cer =

of hello message phase.

server _he\\o,done

D
£
. Phase 3
cli
enLke.Y\eXchan Client sends certificate if requested. Client
ge sends key exchange. Client may send
Certificate verify certificate verification.

changescipher spe
~SPec

w}
Phase 4

Change cipher suite and finish

change_c“p“er _spec handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

Figure 21.15 Handshake Protocol Action

* Compression Method: This is a list of the compression methods the client
supports.

After sending the client_hello message, the client waits for the server_hello
message, which contains the same parameters as the client_hello message.

The details of phase 2 depend on the underlying public-key encryption scheme
that is used. In some cases, the server passes a certificate to the client, possibly addi-
tional key information, and a request for a certificate from the client.

732 CHAPTER 21 / NETWORK SECURITY

The final message in phase 2, and one that is always required, is the server_done
message, which is sent by the server to indicate the end of the server hello and associ-
ated messages. After sending this message, the server will wait for a client response.

In phase 3, upon receipt of the server_done message, the client should verify
that the server provided a valid certificate if required and check that the
server_hello parameters are acceptable. If all is satisfactory, the client sends one or
more messages back to the server, depending on the underlying public-key scheme.

Phase 4 completes the setting up of a secure connection. The client sends a
change_cipher_spec message and copies the pending CipherSpec into the current
CipherSpec. Note that this message is not considered part of the Handshake Proto-
col but is sent using the Change Cipher Spec Protocol. The client then immediately
sends the finished message under the new algorithms, keys, and secrets. The fin-
ished message verifies that the key exchange and authentication processes were
successful.

In response to these two messages, the server sends its own
change_cipher_spec message, transfers the pending to the current CipherSpec, and
sends its finished message. At this point the handshake is complete and the client
and server may begin to exchange application layer data.

21.6 IPv4 AND IPv6 SECURITY

In 1994, the Internet Architecture Board (IAB) issued a report entitled Security in
the Internet Architecture (RFC 1636). The report stated the general consensus that
the Internet needs more and better security, and it identified key areas for security
mechanisms. Among these were the need to secure the network infrastructure from
unauthorized monitoring and control of network traffic and the need to secure end-
user-to-end-user traffic using authentication and encryption mechanisms.

These concerns are fully justified. The Computer Emergency Response Team
(CERT) Coordination Center (CERT/CC) reports an ever-increasing number of
Internet-related vulnerabilities (http://www.cert.org). These include security weak-
nesses in the operating systems of attached computers (e.g., Windows, Linux) as well
as vulnerabilities in Internet routers and other network devices. Similarly CERT/CC
documents a growing number of security-related incidents. These include denial of
service attacks; IP spoofing, in which intruders create packets with false IP
addresses and exploit applications that use authentication based on IP; and various
forms of eavesdropping and packet sniffing, in which attackers read transmitted
information, including logon information and database contents.

In response to these issues, the IAB included authentication and encryption as
necessary security features in the next-generation IP, which has been issued as IPv6.
Fortunately, these security capabilities were designed to be usable both with IPv4
and IPv6. This means that vendors can begin offering these features now, and many
vendors do now have some [PSec capability in their products.

Applications of IPSec

IPSec provides the capability to secure communications across a LAN, across private
and public WANSs, and across the Internet. Examples of its use include the following:

21.6 / IPv4 AND IPv6 SECURITY 733

¢ Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for pri-
vate networks, saving costs and network management overhead.

* Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet service provider
(ISP) and gain secure access to a company network. This reduces the cost of
toll charges for traveling employees and telecommuters.

¢ Establishing extranet and intranet connectivity with partners: IPSec can be
used to secure communication with other organizations, ensuring authentica-
tion and confidentiality and providing a key exchange mechanism.

* Enhancing electronic commerce security: Even though some Web and elec-
tronic commerce applications have built-in security protocols, the use of IPSec
enhances that security.

The principal feature of IPSec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all dis-
tributed applications, including remote logon, client/server, e-mail, file transfer, Web
access, and so on, can be secured.

The Scope of IPSec

IPSec provides three main facilities: an authentication-only function referred to as
Authentication Header (AH), a combined authentication/encryption function called
Encapsulating Security Payload (ESP), and a key exchange function. For virtual pri-
vate networks, both authentication and encryption are generally desired, because it is
important both to (1) assure that unauthorized users do not penetrate the virtual pri-
vate network and (2) assure that eavesdroppers on the Internet cannot read messages
sent over the virtual private network. Because both features are generally desirable,
most implementations are likely to use ESP rather than AH. The key exchange func-
tion allows for manual exchange of keys as well as an automated scheme.

The IPSec specification is quite complex and covers numerous documents. The
most important of these, issued in November of 1998, are RFCs 2401, 2402, 2406,
and 2408. In this section, we provide an overview of some of the most important ele-
ments of [PSec.

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way relation-
ship between a sender and a receiver that affords security services to the traffic
carried on it. If a peer relationship is needed, for two-way secure exchange, then two
security associations are required. Security services are afforded to an SA for the
use of AH or ESP, but not both.

A security association is uniquely identified by three parameters:

¢ Security parameters index (SPI): A bit string assigned to this SA and having local
significance only. The SPI is carried in AH and ESP headers to enable the receiv-
ing system to select the SA under which a received packet will be processed.

734 CHAPTER 21 / NETWORK SECURITY

¢ IP destination address: Currently, only unicast addresses are allowed; this is
the address of the destination endpoint of the SA, which may be an end-user
system or a network system such as a firewall or router.

* Security protocol identifier: This indicates whether the association is an AH or
ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the
Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

An IPSec implementation includes a security association database that defines
the parameters associated with each SA. A security association is defined by the
following parameters:

* Sequence number counter: A 32-bit value used to generate the sequence
number field in AH or ESP headers.

¢ Sequence counter overflow: A flag indicating whether overflow of the
sequence number counter should generate an auditable event and prevent
further transmission of packets on this SA.

* Antireplay window: Used to determine whether an inbound AH or ESP
packet is a replay, by defining a sliding window within which the sequence
number must fall.

¢ AH information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH.

e ESP information: Encryption and authentication algorithm, keys, initialization
values, key lifetimes, and related parameters being used with ESP.

¢ Lifetime of this security association: A time interval or byte count after which
an SA must be replaced with a new SA (and new SPI) or terminated, plus an
indication of which of these actions should occur.

e IPSec protocol mode: Tunnel, transport, or wildcard (required for all imple-
mentations). These modes are discussed later in this section.

e Path MTU: Any observed path maximum transmission unit (maximum size of
a packet that can be transmitted without fragmentation) and aging variables
(required for all implementations).

The key management mechanism that is used to distribute keys is coupled to
the authentication and privacy mechanisms only by way of the security parameters
index. Hence, authentication and privacy have been specified independent of any
specific key management mechanism.

Authentication Header

The authentication header provides support for data integrity and authentication
of IP packets. The data integrity feature ensures that undetected modification to a
packet’s content in transit is not possible. The authentication feature enables an
end system or network device to authenticate the user or application and filter traf-
fic accordingly; it also prevents the address spoofing attacks observed in today’s
Internet.

21.6 / IPv4 AND IPv6 SECURITY 735

Bit: 0 8 16 31

Next header Payload length Reserved

Security parameters index (SPI)

Sequence number

Authentication data (variable)

Figure 21.16 IPSec Authentication Header

Authentication is based on the use of a message authentication code (MAC),
as described in Section 21.3; hence the two parties must share a secret key.
The authentication header consists of the following fields (Figure 21.16):

* Next Header (8 bits): Identifies the type of header immediately following this
header.

e Payload Length (8 bits): Length of authentication header in 32-bit words,
minus 2. For example, the default length of the authentication data field is 96
bits, or three 32-bit words. With a three-word fixed header, there are a total of
six words in the header, and the Payload Length field has a value of 4.

* Reserved (16 bits): For future use.
e Security Parameters Index (32 bits): Identifies a security association.
* Sequence Number (32 bits): A monotonically increasing counter value.

* Authentication Data (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the integrity check value (ICV), or
MAUG, for this packet.

The authentication data field is calculated over

e IP header fields that either do not change in transit (immutable) or that are
predictable in value upon arrival at the endpoint for the AH SA. Fields that
may change in transit and whose value on arrival are unpredictable are set to
zero for purposes of calculation at both source and destination.

* The AH header other than the Authentication Data field. The Authentication
Data field is set to zero for purposes of calculation at both source and destination.

e The entire upper-level protocol data, which is assumed to be immutable in transit.

For IPv4, examples of immutable fields are Internet Header Length and
Source Address. An example of a mutable but predictable field is the Destination
Address (with loose or strict source routing). Examples of mutable fields that are
zeroed prior to ICV calculation are the Time to Live and Header Checksum fields.
Note that both source and destination address fields are protected, so that address
spoofing is prevented.

736

CHAPTER 21 / NETWORK SECURITY

For IPv6, examples in the base header are Version (immutable), Destination

Address (mutable but predictable), and Flow Label (mutable and zeroed for
calculation).

Encapsulating Security Payload

The encapsulating security payload provides confidentiality services, including con-
fidentiality of message contents and limited traffic flow confidentiality. As an
optional feature, ESP can also provide an authentication service.

Figure 21.17 shows the format of an ESP packet. It contains the following

fields:

Security Parameters Index (32 bits): Identifies a security association.
Sequence Number (32 bits): A monotonically increasing counter value.
Payload Data (variable): This is an upper-level segment protected by encryp-
tion.

Padding (0-255 bytes): May be required if the encryption algorithm requires
the plaintext to be a multiple of some number of octets.

Pad Length (8 bits): Indicates the number of pad bytes immediately preceding
this field.

Next Header (8 bits): Identifies the type of data contained in the payload data
field by identifying the first header in that payload (for example, an extension
header in IPv6, or an upper-layer protocol such as TCP).

Authentication Data (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the integrity check value computed
over the ESP packet minus the Authentication Data field.

Bit: 0 16 24 31

~<—Confidentiality coverage —>

~——Authentication coverage ———>

L L

Security parameters index (SPI)

Sequence number

Payload data (variable)

Padding (0 — 255 bytes)

Pad length Next header

Authentication data (variable)

Figure 21.17 IPSec ESP Format

21.7 / Wi-Ft PROTECTED ACCESS 737

21.7 Wi-F1 PROTECTED ACCESS

As discussed in Section 17.6, the 802.111i task group has developed a set of capa-
bilities to address the WLAN security issues. In order to accelerate the introduc-
tion of strong security into WLANSs, the Wi-Fi Alliance promulgated Wi-Fi
Protected Access (WPA) as a Wi-Fi standard. WPA is a set of security mecha-
nisms that eliminates most 802.11 security issues and was based on the current
state of the 802.11i standard. As 802.11i evolves, WPA will evolve to maintain
compatibility.

IEEE 802.11i addresses three main security areas: authentication, key
management, and data transfer privacy. To improve authentication, 802.11i
requires the use of an authentication server (AS) and defines a more robust
authentication protocol. The AS also plays a role in key distribution. For privacy,
802.11i provides three different encryption schemes. The scheme that provides a
long-term solution makes use of the Advanced Encryption Standard (AES) with
128-bit keys. However, because the use of AES would require expensive
upgrades to existing equipment, alternative schemes based on 104-bit RC4 are
also defined.

Figure 21.18 gives a general overview of 802.11i operation. First, an exchange
between a station and an AP enables the two to agree on a set of security capabili-
ties to be used. Then, an exchange involving the AS and the station provides for
secure authentication. The AS is responsible for key distribution to the AP, which in
turn manages and distributes keys to stations. Finally, strong encryption is used to
protect data transfer between the station and the AP.

The 802.11i architecture consists of three main ingredients:

* Authentication: A protocol is used to define an exchange between a
user and an AS that provides mutual authentication and generates
temporary keys to be used between the client and the AP over the wireless
link.

Station Access point

Authentication server

Security capabilities discovery

Authentication

Key management Key distribution

Data protection

Figure 21.18 802.11i Operational Phases

738 CHAPTER 21 / NETWORK SECURITY

* Access control: This function enforces the use of the authentication function,
routes the messages properly, and facilitates key exchange. It can work with a
variety of authentication protocols.

e Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are
encrypted, along with a message integrity code that ensures that the data have
not been altered.

Authentication operates at a level above the LLC and MAC protocols and is
considered beyond the scope of 802.11. There are a number of popular authentica-
tion protocols in use, including the Extensible Authentication Protocol (EAP) and
the Remote Authentication Dial-In User Service (RADIUS). These are not covered
in this book. The remainder of this section examines access control and privacy with
message integrity.

Access Control’

IEEE 802.11i makes use of another standard that was designed to provide access
control functions for LANs. The standard is IEEE 802.1X, Port-Based Network
Access Control. IEEE 802.1X uses the terms supplicant, authenticator, and
authentication server (AS). In the context of an 802.11 WLAN, the first two terms
correspond to the wireless station and the AP. The AS is typically a separate device
on the wired side of the network (i.e., accessible over the DS) but could also reside
directly on the authenticator.

Before a supplicant is authenticated by the AS, using an authentication proto-
col, the authenticator only passes control or authentication messages between the
supplicant and the AS; the 802.1X control channel is unblocked but the 802.11 data
channel is blocked. Once a supplicant is authenticated and keys are provided, the
authenticator can forward data from the supplicant, subject to predefined access
control limitations for the supplicant to the network. Under these circumstances, the
data channel is unblocked.

As indicated in Figure 21.19, 802.1X uses the concepts of controlled and
uncontrolled ports. Ports are logical entities defined within the authenticator and
refer to physical network connections. For a WLAN, the authenticator (the AP) may
have only two physical ports, one connecting to the DS and one for wireless com-
munication within its BSS. Each logical port is mapped to one of these two physical
ports. An uncontrolled port allows the exchange of PDUs between the supplicant
and other the AS regardless of the authentication state of the supplicant. A con-
trolled port allows the exchange of PDUs between a supplicant and other systems
on the LAN only if the current state of the supplicant authorizes such an exchange.

The 802.1X framework, with an upper-layer authentication protocol, fits nicely
with a BSS architecture that includes a number of wireless stations and an AP. How-
ever, for an IBSS, there is no AP. For an IBSS, 802.11i provides a more complex solu-
tion that, in essence, involves pairwise authentication between stations on the IBSS.

3In this subsection, we are discussing access control as a security function. This is a different function than
medium access control (MAC) as described in Chapter 15. Unfortunately, the literature and the stan-
dards use the term access control in both contexts.

21.8 / RECOMMENDED READING AND WEB SITES 739

Uncontrolled
port

Authentication server

Z Access point

Station
Controlled Controlled
port port
To other
wireless stations To DS
on this BSS

Figure 21.19 802.11i Access Control

Privacy with Message Integrity

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11 MAC
PDUs. The first scheme is known as the Temporal Key Integrity Protocol (TKIP) or
WPA-1.TKIP is designed to require only software changes to devices that are imple-
mented with an older wireless LAN security approach called Wired Equivalent Pri-
vacy (WEP); it uses the same RC4 stream encryption algorithm as WEP. The second
scheme is known as Counter Mode-CBC MAC Protocol (CCMP) or WPA-2. CCMP
makes use of the Advanced Encryption Standard (AES) encryption protocol.®

Both TKIP and WPA-2 add a message integrity code (MIC) to the 802.11
MAC frame after the data field. The MIC is generated by an algorithm, called
Michael, that computes a 64-bit value calculated using the source and destination
MAC address values and the Data field. This value is then encrypted using a sepa-
rate key from that used for encrypting the Data fields. Thus, both the data and MIC
fields are encrypted. The use of a more complex algorithm, a separate encryption
key, and a 64-bit length, all make the MIC and substantially stronger message
authentication feature than the ICV. The MIC serves the purpose of message
authentication, a function described earlier in this chapter.

21.8 RECOMMENDED READING AND WEB SITES

The topics in this chapter are covered in greater detail in [STALO6]. For coverage of crypto-
graphic algorithms, [SCHN96] is a valuable reference work; it contains descriptions of virtually
every cryptographic algorithm and protocol in use up to the time of the book’s publication.

®The AES algorithm is described in detail in [STALO06] and [STAL02].

740 CHAPTER 21 / NETWORK SECURITY

SCHNY6 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

STALO06 Stallings, W. Cryptography and Network Security: Principles and Practice,
Fourth Edition. Upper Saddle River, NJ: Prentice Hall, 2003.

Recommended Web sites:

e Coast: Comprehensive set of links related to cryptography and network security

o IETF Security Area: Provides up-to-date information on Internet security standard-

ization efforts

¢ IEEE Technical Committee on Security and Privacy: Provides copies of IEEE’s

newsletter and information on IEEE-related activities

21.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

active attack
authenticity
availability
Advanced Encryption
Standard (AES)
brute-force attack
ciphertext
confidentiality
cryptanalysis
Data Encryption Standard
(DES)
decryption algorithm
denial of service
digital signature
encryption algorithm

hash function

integrity

IP Security (IPSec)

key distribution

key distribution center

key management

masquerade

message authentication

message authentication code
(MAC)

one-way hash function

passive attack

plaintext

private key

public key

public-key certificate

public-key encryption

replay

RSA

secret key

secure hash function

Secure Socket Layer
(SSL)

session key

SHA

symmetric encryption

traffic analysis

traffic padding

Transport Layer Security
(TLS)

Review Questions

211
21.2
21.3
214
21.5
21.6
21.7

What is the difference between passive and active security threats?

List and briefly define categories of passive and active security threats.
What are DES and triple DES?
How is the AES expected to be an improvement over triple DES?
Explain traffic padding.
List and briefly define various approaches to message authentication.
What is a secure hash function?

21.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 741

21.8 Explain the difference between symmetric encryption and public-key encryption.
21.9 What are the distinctions among the terms public key, private key, secret key?

21.10 What is a digital signature?

21.11 What is a public-key certificate?

21.12 What protocols comprise SSL?

21.13 What is the difference between and SSL connection and an SSL session?

21.14 What services are provided by the SSL Record Protocol?

21.15 What services are provided by IPSec?

Problems

21.1 Give some examples where traffic analysis could jeopardize security. Describe situa-
tions where end-to-end encryption combined with link encryption would still allow
enough traffic analysis to be dangerous.

21.2 Key distribution schemes using an access control center and/or a key distribution cen-
ter have central points vulnerable to attack. Discuss the security implications of such
centralization.

21.3 Suppose that someone suggests the following way to confirm that the two of you are
both in possession of the same secret key. You create a random bit string the length of
the key, XOR it with the key, and send the result over the channel. Your partner
XORs the incoming block with the key (which should be the same as your key) and
sends it back. You check and if what you receive is your original random string, you
have verified that your partner has the same secret key, yet neither of you has ever
transmitted the key. Is there a flaw in this scheme?

21.4 Prior to the discovery of any specific public-key schemes, such as RSA, an existence

proof was developed whose purpose was to demonstrate that public-key encryption is
possible in theory. Consider the functions f(x;) = zy; f2(x2,) = 225 f3(x3, ¥3) = 23,
where all values are integers with 1 =< x;, y;, z; = N. Function f; can be represented
by a vector M1 of length N, in which the kth entry is the value of f;(k). Similarly, f, and
f3 can be represented by N X N matrices M2 and M3. The intent is to represent the
encryption/decryption process by table lookups for tables with very large values of N.
Such tables would be impractically huge but could, in principle, be constructed. The
scheme works as follows: Construct M1 with a random permutation of all integers
between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so
that each row contains a random permutation of the first NV integers. Finally, fill in M3
to satisfy the following condition:

H(f(fi(k), p), k) = pforallk, pwith1 = k,p = N

In words,

1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.

3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.

a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-
tion. As an example, fill in M3 for the following simple case:

3

Ml = M2 = M3 =

N | W = & W

2 4
2 1
3 4
1 2
5 4

| U W

5
2
4
3

742 CHAPTER 21 / NETWORK SECURITY

21.5

21.6

21.7

21.8

219
21.10

21.11

21.12

21.13

Convention: The ith element of M1 corresponds to k = i. The ith row of

M2 corresponds to x = i; the jth column of M2 corresponds to p = j. The ith row
of M3 corresponds to z = i; the jth column of M3 corresponds to k = j.

b. Describe the use of this set of tables to perform encryption and decryption
between two users.

c. Argue that this is a secure scheme.

Perform encryption and decryption using the RSA algorithm, as in Figure 21.11, for

the following:

a p=3q=11,d=T7,M =5

b. p=5qg=11,e=3M =9

c. p=Tq=11,e=17,M =38

d p=11;g=13,e=11; M =7

e. p=17,q=31,e =7, M = 2. Hint: Decryption is not as hard as you think; use

some finesse.
In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user
whose public key is e = 5, n = 35. What is the plaintext M?
In an RSA system, the public key of a given user is e = 31, n = 3599. What is the pri-
vate key of this user?
Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have
the private key. Assume n = pgq, e is the public key. Suppose also someone tells us he
or she knows one of the plaintext blocks has a common factor with n. Does this help
us in any way?
Show how RSA can be represented by matrices M1, M2, and M3 of Problem 21.4.
Consider the following scheme:
1. Pick an odd number, E.
2. Pick two prime numbers, P and Q, where (P — 1)(Q — 1) — 1is evenly divisible

by E.
3. Multiply P and Q to get N.
(P-1(Q@-1)(E-1)+1

£ .

Is this scheme equivalent to RSA? Show why or why not.
Consider using RSA with a known key to construct a one-way hash function. Then
process a message consisting of a sequence of blocks as follows: Encrypt the first
block, XOR the result with the second block and encrypt again, and so on. Show that
this scheme is not secure by solving the following problem. Given a two-block mes-
sage B1, B2, and its hash

4. Calculate D =

RSAH(B1,B2) = RSA(RSA(B1) @ B2)

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(BI1, B2).
In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

In discussing AH processing, it was mentioned that not all of the fields in an IP header
are included in MAC calculation.

a. For each of the fields in the IPv4 header, indicate whether the field is immutable,
mutable but predictable, or mutable (zeroed prior to ICV calculation).

b. Do the same for the IPv6 header.

c. Do the same for the IPv6 extension headers.

In each case, justify your decision for each field.

