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KEY POINTS

• The transport protocol provides an end-to-end data transfer service
that shields upper-layer protocols from the details of the intervening
network or networks. A transport protocol can be either connection
oriented, such as TCP, or connectionless, such as UDP.

• If the underlying network or internetwork service is unreliable, such
as with the use of IP, then a reliable connection-oriented transport
protocol becomes quite complex. The basic cause of this complexity is
the need to deal with the relatively large and variable delays experi-
enced between end systems. These large, variable delays complicate
the flow control and error control techniques.

• TCP uses a credit-based flow control technique that is somewhat dif-
ferent from the sliding-window flow control found in X.25 and
HDLC. In essence, TCP separates acknowledgments from the man-
agement of the size of the sliding window.

• Although the TCP credit-based mechanism was designed for end-to-
end flow control, it is also used to assist in internetwork congestion
control. When a TCP entity detects the presence of congestion in the
Internet, it reduces the flow of data onto the Internet until it detects
an easing in congestion.

The foregoing observations should make us reconsider the widely held view that birds
live only in the present. In fact, birds are aware of more than immediately present
stimuli; they remember the past and anticipate the future.

—The Minds of Birds, Alexander Skutch

In a protocol architecture, the transport protocol sits above a network or
internetwork layer, which provides network-related services, and just below applica-
tion and other upper-layer protocols. The transport protocol provides services to
transport service (TS) users, such as FTP, SMTP, and TELNET. The local transport
entity communicates with some remote transport entity, using the services of some
lower layer, such as the Internet Protocol. The general service provided by a trans-
port protocol is the end-to-end transport of data in a way that shields the TS user
from the details of the underlying communications systems.

We begin this chapter by examining the protocol mechanisms required to pro-
vide these services. We find that most of the complexity relates to reliable connec-
tion-oriented services. As might be expected, the less the network service provides,
the more the transport protocol must do. The remainder of the chapter looks at two
widely used transport protocols: Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).

Refer to Figure 2.5 to see the position within the TCP/IP suite of the protocols
discussed in this chapter.
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20.1 CONNECTION-ORIENTED TRANSPORT
PROTOCOL MECHANISMS

Two basic types of transport service are possible: connection oriented and connec-
tionless or datagram service. A connection-oriented service provides for the estab-
lishment, maintenance, and termination of a logical connection between TS users.
This has, so far, been the most common type of protocol service available and has a
wide variety of applications. The connection-oriented service generally implies that
the service is reliable. This section looks at the transport protocol mechanisms
needed to support the connection-oriented service.

A full-feature connection-oriented transport protocol, such as TCP, is very
complex. For purposes of clarity we present the transport protocol mechanisms in
an evolutionary fashion. We begin with a network service that makes life easy for
the transport protocol, by guaranteeing the delivery of all transport data units in
order and defining the required mechanisms.Then we will look at the transport pro-
tocol mechanisms required to cope with an unreliable network service. All of this
discussion applies in general to transport-level protocols. In Section 20.2, we apply
the concepts developed in this section to describe TCP.

Reliable Sequencing Network Service

Let us assume that the network service accepts messages of arbitrary length and,
with virtually 100% reliability, delivers them in sequence to the destination. Exam-
ples of such networks are as follows:

• A highly reliable packet-switching network with an X.25 interface

• A frame relay network using the LAPF control protocol

• An IEEE 802.3 LAN using the connection-oriented LLC service

In all of these cases, the transport protocol is used as an end-to-end proto-
col between two systems attached to the same network, rather than across an
internet.

The assumption of a reliable sequencing networking service allows the use of
a quite simple transport protocol. Four issues need to be addressed:

• Addressing

• Multiplexing

• Flow control

• Connection establishment/termination

Addressing The issue concerned with addressing is simply this: A user of a given
transport entity wishes either to establish a connection with or make a data transfer
to a user of some other transport entity using the same transport protocol. The tar-
get user needs to be specified by all of the following:

• User identification

• Transport entity identification
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• Host address

• Network number

The transport protocol must be able to derive the information listed above
from the TS user address. Typically, the user address is specified as (Host, Port). The
Port variable represents a particular TS user at the specified host. Generally, there
will be a single transport entity at each host, so a transport entity identification is not
needed. If more than one transport entity is present, there is usually only one of
each type. In this latter case, the address should include a designation of the type of
transport protocol (e.g., TCP, UDP). In the case of a single network, Host identifies
an attached network device. In the case of an internet, Host is a global internet
address. In TCP, the combination of port and host is referred to as a socket.

Because routing is not a concern of the transport layer, it simply passes the
Host portion of the address down to the network service. Port is included in a trans-
port header, to be used at the destination by the destination transport protocol entity.

One question remains to be addressed: How does the initiating TS user know
the address of the destination TS user? Two static and two dynamic strategies sug-
gest themselves:

1. The TS user knows the address it wishes to use ahead of time. This is basically
a system configuration function. For example, a process may be running that is
only of concern to a limited number of TS users, such as a process that collects
statistics on performance. From time to time, a central network management
routine connects to the process to obtain the statistics. These processes gener-
ally are not, and should not be, well known and accessible to all.

2. Some commonly used services are assigned “well-known addresses.” Examples
include the server side of FTP, SMTP, and some other standard protocols.

3. A name server is provided. The TS user requests a service by some generic or
global name. The request is sent to the name server, which does a directory
lookup and returns an address. The transport entity then proceeds with the con-
nection. This service is useful for commonly used applications that change loca-
tion from time to time. For example, a data entry process may be moved from one
host to another on a local network to balance load.

4. In some cases, the target user is to be a process that is spawned at request
time. The initiating user can send a process request to a well-known address.
The user at that address is a privileged system process that will spawn the
new process and return an address. For example, a programmer has devel-
oped a private application (e.g., a simulation program) that will execute on
a remote server but be invoked from a local workstation. A request can be
issued to a remote job-management process that spawns the simulation
process.

Multiplexing Multiplexing was discussed in general terms in Section 18.1. With
respect to the interface between the transport protocol and higher-level protocols,
the transport protocol performs a multiplexing/demultiplexing function. That is,
multiple users employ the same transport protocol and are distinguished by port
numbers or service access points.
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1Recall from Chapter 2 that the blocks of data (protocol data units) exchanged by TCP entities are
referred to as TCP segments.

The transport entity may also perform a multiplexing function with respect to
the network services that it uses. Recall that we defined upward multiplexing as the
multiplexing of multiple connections on a single lower-level connection, and down-
ward multiplexing as the splitting of a single connection among multiple lower-level
connections (Section 18.1).

Consider, for example, a transport entity making use of an X.25 service. Why
should the transport entity employ upward multiplexing? There are, after all, 4095
virtual circuits available. In the typical case, this is more than enough to handle all
active TS users. However, most X.25 networks base part of their charge on virtual
circuit connect time, because each virtual circuit consumes some node buffer
resources. Thus, if a single virtual circuit provides sufficient throughput for multiple
TS users, upward multiplexing is indicated.

On the other hand, downward multiplexing or splitting might be used to
improve throughput. For example, each X.25 virtual circuit is restricted to a 
3-bit or 7-bit sequence number. A larger sequence space might be needed for
high-speed, high-delay networks. Of course, throughput can only be increased
so far. If there is a single host-node link over which all virtual circuits are mul-
tiplexed, the throughput of a transport connection cannot exceed the data rate
of that link.

Flow Control Whereas flow control is a relatively simple mechanism at the
link layer, it is a rather complex mechanism at the transport layer, for two main
reasons:

• The transmission delay between transport entities is generally long compared
to actual transmission time. This means that there is a considerable delay in
the communication of flow control information.

• Because the transport layer operates over a network or internet, the amount
of the transmission delay may be highly variable. This makes it difficult to
effectively use a timeout mechanism for retransmission of lost data.

In general, there are two reasons why one transport entity would want to restrain
the rate of segment1 transmission over a connection from another transport entity:

• The user of the receiving transport entity cannot keep up with the flow of data.

• The receiving transport entity itself cannot keep up with the flow of segments.

How do such problems manifest themselves? Presumably a transport entity has
a certain amount of buffer space. Incoming segments are added to the buffer. Each
buffered segment is processed (i.e., the transport header is examined) and the data
are sent to the TS user. Either of the two problems just mentioned will cause the
buffer to fill up.Thus, the transport entity needs to take steps to stop or slow the flow
of segments to prevent buffer overflow.This requirement is difficult to fulfill because
of the annoying time gap between sender and receiver.We return to this point subse-
quently. First, we present four ways of coping with the flow control requirement. The
receiving transport entity can
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1. Do nothing.

2. Refuse to accept further segments from the network service.

3. Use a fixed sliding-window protocol.

4. Use a credit scheme.

Alternative 1 means that the segments that overflow the buffer are discarded.
The sending transport entity, failing to get an acknowledgment, will retransmit.This is
a shame, because the advantage of a reliable network is that one never has to retrans-
mit. Furthermore, the effect of this maneuver is to exacerbate the problem.The sender
has increased its output to include new segments plus retransmitted old segments.

The second alternative is a backpressure mechanism that relies on the net-
work service to do the work. When a buffer of a transport entity is full, it refuses
additional data from the network service. This triggers flow control procedures
within the network that throttle the network service at the sending end.This service,
in turn, refuses additional segments from its transport entity. It should be clear that
this mechanism is clumsy and coarse grained. For example, if multiple transport con-
nections are multiplexed on a single network connection (virtual circuit), flow con-
trol is exercised only on the aggregate of all transport connections.

The third alternative is already familiar to you from our discussions of link
layer protocols in Chapter 7. The key ingredients, recall, are

• The use of sequence numbers on data units

• The use of a window of fixed size

• The use of acknowledgments to advance the window

With a reliable network service, the sliding-window technique would work quite
well. For example, consider a protocol with a window size of 7. When the sender
receives an acknowledgment to a particular segment, it is automatically authorized to
send the succeeding seven segments (of course, some may already have been sent).
When the receiver’s buffer capacity gets down to seven segments, it can withhold
acknowledgment of incoming segments to avoid overflow.The sending transport entity
can send at most seven additional segments and then must stop. Because the underly-
ing network service is reliable, the sender will not time out and retransmit. Thus, at
some point, a sending transport entity may have a number of segments outstanding for
which no acknowledgment has been received. Because we are dealing with a reliable
network, the sending transport entity can assume that the segments will get through
and that the lack of acknowledgment is a flow control tactic.This tactic would not work
well in an unreliable network, because the sending transport entity would not know
whether the lack of acknowledgment is due to flow control or a lost segment.

The fourth alternative, a credit scheme, provides the receiver with a greater
degree of control over data flow. Although it is not strictly necessary with a reliable
network service, a credit scheme should result in a smoother traffic flow. Further, it
is a more effective scheme with an unreliable network service, as we shall see.

The credit scheme decouples acknowledgment from flow control. In fixed slid-
ing-window protocols, such as X.25 and HDLC, the two are synonymous. In a credit
scheme, a segment may be acknowledged without granting new credit, and vice versa.
For the credit scheme, each individual octet of data that is transmitted is considered to
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have a unique sequence number. In addition to data, each transmitted segment
includes in its header three fields related to flow control: sequence number (SN),
acknowledgment number (AN), and window (W). When a transport entity sends a
segment, it includes the sequence number of the first octet in the segment data field.
Implicitly, the remaining data octets are numbered sequentially following the first
data octet. A transport entity acknowledges an incoming segment with a return seg-
ment that includes with the following interpretation:

• All octets through sequence number are acknowledged; the next
expected octet has sequence number i.

• Permission is granted to send an additional window of octets of data;
that is, the j octets corresponding to sequence numbers i through

Figure 20.1 illustrates the mechanism (compare Figure 7.4). For simplicity, we
show data flow in one direction only and assume that 200 octets of data are sent in
each segment. Initially, through the connection establishment process, the sending
and receiving sequence numbers are synchronized and A is granted an initial credit
allocation of 1400 octets, beginning with octet number 1001.The first segment trans-
mitted by A contains data octets numbered 1001 through 1200. After sending 600
octets in three segments, A has shrunk its window to a size of 800 octets (numbers
1601 through 2400).After B receives these three segments, 600 octets out of its orig-
inal 1400 octets of credit are accounted for, and 800 octets of credit are outstanding.
Now suppose that, at this point, B is capable of absorbing 1000 octets of incoming
data on this connection. Accordingly, B acknowledges receipt of all octets through
1600 and issues a credit of 1000 octets. This means that A can send octets 1601

i + j - 1.
W = j

SN = i - 1

1AN = i, W = j2,

A may send 1400 octets

A shrinks its transmit window with each
transmission

B is prepared to receive 1400 octets, 
beginning with 1001

B acknowledges 3 segments (600 octets) but is 
only prepared to receive 200 additional octets 
beyond the original budget (i.e., B will accept 
octets 1601 through 2600)

B acknowledges 5 segments (1000 octets) and
restores the original amount of credit

A adjusts its window with each credit

A exhausts its credit

A receives new credit 

Transport Entity A Transport Entity B

...1000

1001

1001 2400 2401... ...1000 1001 2400 2401...

...2600 2601 4000 4001...

...2600 2601 4000 4001...

...1000 1601 2401...

...1000 1001 2001 2401...

...1600 1601 2001 2601...

...1600 1601 2601...

...1600 1601 2001 2601...

...1600 1601 2600 2601...

SN � 1001

SN � 1401

SN � 1201

SN � 2001

SN � 2401

SN � 2201

SN � 1801

SN � 1601

AN � 2601, W � 1400

AN � 1601, W
� 1000

Figure 20.1 Example of TCP Credit Allocation Mechanism



662 CHAPTER 20 / TRANSPORT PROTOCOLS

(a) Send sequence space

(b) Receive sequence space 

� � �

Window of octets
that may be transmittedData octets already transmitted

Octets not yet
acknowledgedData octets so far acknowledged

Last octet
transmitted

Last octet
acknowledged

(AN � 1)

Initial sequence
number (ISN)

Window shrinks from
trailing edge as
segments are sent

Window expands
from leading edge
as credits are received

� � �

Window of octets
that may be acceptedData octets already received

Octets not yet
acknowledgedData octets so far acknowledged

Last octet
received

Last octet
acknowledged

(AN � 1)

Initial sequence
number (ISN)

Window shrinks from
trailing edge as
segments are received

Window expands
from leading edge
as credits are sent

Figure 20.2 Sending and Receiving Flow Control Perspectives

through 2600 (5 segments). However, by the time that B’s message has arrived at A,
A has already sent two segments, containing octets 1601 through 2000 (which was
permissible under the initial allocation). Thus, A’s remaining credit upon receipt of
B’s credit allocation is only 600 octets (3 segments). As the exchange proceeds, A
advances the trailing edge of its window each time that it transmits and advances the
leading edge only when it is granted credit.

Figure 20.2 shows the view of this mechanism from the sending and receiving
sides (compare Figure 7.3). Typically, both sides take both views because data may
be exchanged in both directions. Note that the receiver is not required to immedi-
ately acknowledge incoming segments but may wait and issue a cumulative
acknowledgment for a number of segments.

The receiver needs to adopt some policy concerning the amount of data it per-
mits the sender to transmit. The conservative approach is to only allow new seg-
ments up to the limit of available buffer space. If this policy were in effect in Figure
20.1, the first credit message implies that B has 1000 available octets in its buffer,
and the second message that B has 1400 available octets.

A conservative flow control scheme may limit the throughput of the transport
connection in long-delay situations.The receiver could potentially increase through-
put by optimistically granting credit for space it does not have. For example, if a
receiver’s buffer is full but it anticipates that it can release space for 1000 octets
within a round-trip propagation time, it could immediately send a credit of 1000. If
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the receiver can keep up with the sender, this scheme may increase throughput and
can do no harm. If the sender is faster than the receiver, however, some segments
may be discarded, necessitating a retransmission. Because retransmissions are not
otherwise necessary with a reliable network service (in the absence of internet con-
gestion), an optimistic flow control scheme will complicate the protocol.

Connection Establishment and Termination Even with a reliable network
service, there is a need for connection establishment and termination procedures to
support connection-oriented service. Connection establishment serves three main
purposes:

• It allows each end to assure that the other exists.

• It allows exchange or negotiation of optional parameters (e.g., maximum seg-
ment size, maximum window size, quality of service).

• It triggers allocation of transport entity resources (e.g., buffer space, entry in
connection table).

Connection establishment is by mutual agreement and can be accomplished by a
simple set of user commands and control segments, as shown in the state diagram of
Figure 20.3. To begin, a TS user is in an CLOSED state (i.e., it has no open transport
connection).The TS user can signal to the local TCP entity that it will passively wait for

CLOSED

SYN SENT LISTEN

ESTAB

FIN WAIT CLOSE WAIT

CLOSED

Active open
Send SYN

Event
Action

Receive SYN
Send SYN

Close
Send FIN

Close
Send FIN

Close Close

Passive open

Receive SYN

Receive FIN

Receive FIN

State

Legend:

Figure 20.3 Simple Connection State Diagram
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a request with a Passive Open command. A server program, such as time-sharing or a
file transfer application, might do this. The TS user may change its mind by sending a
Close command. After the Passive Open command is issued, the transport entity cre-
ates a connection object of some sort (i.e., a table entry) that is in the LISTEN state.

From the CLOSED state, a TS user may open a connection by issuing an Active
Open command, which instructs the transport entity to attempt connection establish-
ment with a designated remote TS user, which triggers the transport entity to send a
SYN (for synchronize) segment. This segment is carried to the receiving transport
entity and interpreted as a request for connection to a particular port. If the destina-
tion transport entity is in the LISTEN state for that port, then a connection is estab-
lished by the following actions by the receiving transport entity:

• Signal the local TS user that a connection is open.

• Send a SYN as confirmation to the remote transport entity.

• Put the connection object in an ESTAB (established) state.

When the responding SYN is received by the initiating transport entity, it too
can move the connection to an ESTAB state.The connection is prematurely aborted
if either TS user issues a Close command.

Figure 20.4 shows the robustness of this protocol. Either side can initiate a
connection. Further, if both sides initiate the connection at about the same time, it is
established without confusion. This is because the SYN segment functions both as a
connection request and a connection acknowledgment.

The reader may ask what happens if a SYN comes in while the requested TS
user is idle (not listening). Three courses may be followed:

• The transport entity can reject the request by sending a RST (reset) segment
back to the other transport entity.

• The request can be queued until the local TS user issues a matching Open.

• The transport entity can interrupt or otherwise signal the local TS user to
notify it of a pending request.

System A
State/(command)

System B
State/(command)

(Passive open)
LISTEN

CLOSED

System A
State/(command)

System B
State/(command)

CLOSED

(Active open)
SYN SENT

ESTAB

CLOSED

(Active open)
SYN SENT

ESTAB

(Active open)
SYN SENT

ESTAB

CLOSED

ESTAB

(a) Active/passive open (b) Active/active open

SYN
SYN

SYN

SYN

Figure 20.4 Connection Establishment Scenarios
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Note that if the third mechanism is used, a Passive Open command is not
strictly necessary but may be replaced by an Accept command, which is a signal
from the user to the transport entity that it accepts the request for connection.

Connection termination is handled similarly. Either side, or both sides, may
initiate a close. The connection is closed by mutual agreement. This strategy
allows for either abrupt or graceful termination. With abrupt termination, data in
transit may be lost; a graceful termination prevents either side from closing the
connection until all data have been delivered. To achieve the latter, a connection
in the FIN WAIT state must continue to accept data segments until a FIN (finish)
segment is received.

Figure 20.3 defines the procedure for graceful termination. First, consider the
side that initiates the termination procedure:

1. In response to a TS user’s Close primitive, a transport entity sends a FIN seg-
ment to the other side of the connection, requesting termination.

2. Having sent the FIN, the transport entity places the connection in the FIN WAIT
state. In this state, the transport entity must continue to accept data from the
other side and deliver that data to its user.

3. When a FIN is received in response, the transport entity informs its user and
closes the connection.

From the point of view of the side that does not initiate a termination,

1. When a FIN segment is received, the transport entity informs its user of the
termination request and places the connection in the CLOSE WAIT state. In
this state, the transport entity must continue to accept data from its user and
transmit it in data segments to the other side.

2. When the user issues a Close primitive, the transport entity sends a responding
FIN segment to the other side and closes the connection.

This procedure ensures that both sides have received all outstanding data and
that both sides agree to connection termination before actual termination.

Unreliable Network Service

A more difficult case for a transport protocol is that of an unreliable network ser-
vice. Examples of such networks are as follows:

• An internetwork using IP

• A frame relay network using only the LAPF core protocol

• An IEEE 802.3 LAN using the unacknowledged connectionless LLC service

The problem is not just that segments are occasionally lost, but that seg-
ments may arrive out of sequence due to variable transit delays. As we shall see,
elaborate machinery is required to cope with these two interrelated network defi-
ciencies.We shall also see that a discouraging pattern emerges.The combination of
unreliability and nonsequencing creates problems with every mechanism we have
discussed so far. Generally, the solution to each problem raises new problems.
Although there are problems to be overcome for protocols at all levels, it seems
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that there are more difficulties with a reliable connection-oriented transport pro-
tocol than any other sort of protocol.

In the remainder of this section, unless otherwise noted, the mechanisms dis-
cussed are those used by TCP. Seven issues need to be addressed:

• Ordered delivery

• Retransmission strategy

• Duplicate detection

• Flow control

• Connection establishment

• Connection termination

• Failure recovery

Ordered Delivery With an unreliable network service, it is possible that seg-
ments, even if they are all delivered, may arrive out of order. The required solution
to this problem is to number segments sequentially. We have seen that for data
link control protocols, such as HDLC, and for X.25, each data unit (frame, packet)
is numbered sequentially with each successive sequence number being one more
than the previous sequence number. This scheme is used in some transport proto-
cols, such as the ISO transport protocols. However,TCP uses a somewhat different
scheme in which each data octet that is transmitted is implicitly numbered. Thus,
the first segment may have a sequence number of 1. If that segment has 200 octets
of data, then the second segment would have the sequence number 201, and so on.
For simplicity in the discussions of this section, we will continue to assume that
each successive segment’s sequence number is 200 more than that of the previous
segment; that is, each segment contains exactly 200 octets of data.

Retransmission Strategy Two events necessitate the retransmission of a seg-
ment. First, a segment may be damaged in transit but nevertheless arrive at its des-
tination. If a checksum is included with the segment, the receiving transport entity
can detect the error and discard the segment. The second contingency is that a seg-
ment fails to arrive. In either case, the sending transport entity does not know that
the segment transmission was unsuccessful. To cover this contingency, a positive
acknowledgment scheme is used: The receiver must acknowledge each successfully
received segment by returning a segment containing an acknowledgment number.
For efficiency, we do not require one acknowledgment per segment. Rather, a
cumulative acknowledgment can be used, as we have seen many times in this book.
Thus, the receiver may receive segments numbered 1, 201, and 401, but only send

back. The sender must interpret to mean that the segment
with and all previous segments have been successfully received.

If a segment does not arrive successfully, no acknowledgment will be issued
and a retransmission is in order. To cope with this situation, there must be a timer
associated with each segment as it is sent. If the timer expires before the segment is
acknowledged, the sender must retransmit.

So the addition of a timer solves that problem. Next problem: At what value
should the timer be set? Two strategies suggest themselves.A fixed timer value could

SN = 401
AN = 601AN = 601
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be used, based on an understanding of the network’s typical behavior. This suffers
from an inability to respond to changing network conditions. If the value is too small,
there will be many unnecessary retransmissions, wasting network capacity. If the
value is too large, the protocol will be sluggish in responding to a lost segment. The
timer should be set at a value a bit longer than the round trip time (send segment,
receive ACK). Of course, this delay is variable even under constant network load.
Worse, the statistics of the delay will vary with changing network conditions.

An adaptive scheme has its own problems. Suppose that the transport entity
keeps track of the time taken to acknowledge data segments and sets its
retransmission timer based on the average of the observed delays.This value cannot
be trusted for three reasons:

• The peer transport entity may not acknowledge a segment immediately. Recall
that we gave it the privilege of cumulative acknowledgments.

• If a segment has been retransmitted, the sender cannot know whether the
received acknowledgment is a response to the initial transmission or the
retransmission.

• Network conditions may change suddenly.

Each of these problems is a cause for some further tweaking of the transport algo-
rithm, but the problem admits of no complete solution. There will always be some
uncertainty concerning the best value for the retransmission timer.We return to this
issue in Section 20.3.

Incidentally, the retransmission timer is only one of a number of timers needed
for proper functioning of a transport protocol. These are listed in Table 20.1,
together with a brief explanation.

Duplicate Detection If a segment is lost and then retransmitted, no confusion
will result. If, however, one or more segments in sequence are successfully delivered,
but the corresponding ACK is lost, then the sending transport entity will time out and
one or more segments will be retransmitted. If these retransmitted segments arrive
successfully, they will be duplicates of previously received segments. Thus, the
receiver must be able to recognize duplicates. The fact that each segment carries a
sequence number helps, but, nevertheless, duplicate detection and handling is not
simple. There are two cases:

• A duplicate is received prior to the close of the connection.

• A duplicate is received after the close of the connection.

Table 20.1 Transport Protocol Timers

Retransmission timer Retransmit an unacknowledged segment

2MSL (maximum segment Minimum time between closing one connection and
lifetime) timer opening another with the same destination address

Persist timer Maximum time between ACK/CREDIT segments

Retransmit-SYN timer Time between attempts to open a connection

Keepalive timer Abort connection when no segments are received
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The second case is discussed in the subsection on connection establishment.
We deal with the first case here.

Notice that we say “a” duplicate rather than “the” duplicate. From the sender’s
point of view, the retransmitted segment is the duplicate. However, the retransmit-
ted segment may arrive before the original segment, in which case the receiver
views the original segment as the duplicate. In any case, two tactics are needed to
cope with a duplicate received prior to the close of a connection:

• The receiver must assume that its acknowledgment was lost and therefore
must acknowledge the duplicate. Consequently, the sender must not get con-
fused if it receives multiple acknowledgments to the same segment.

• The sequence number space must be long enough so as not to “cycle” in less than
the maximum possible segment lifetime (time it takes segment to transit network).

Figure 20.5 illustrates the reason for the latter requirement. In this example, the
sequence space is of length 1600; that is, after the sequence numbers cycle
back and begin with For simplicity, we assume the receiving transport entity
maintains a credit window size of 600. Suppose that A has transmitted data segments
with 201, and 401. B has received the two segments with and

but the segment with is delayed in transit. Thus, B does not send
any acknowledgments. Eventually, A times out and retransmits segment 
When the duplicate segment arrives, B acknowledges 1, 201, and 401 with

Meanwhile, A has timed out again and retransmits which B
acknowledges with another Things now seem to have sorted themselves
out and data transfer continues.When the sequence space is exhausted,A cycles back
to and continues.Alas, the old segment makes a belated appearance
and is accepted by B before the new segment arrives.When the new segment

does arrive, it is treated as a duplicate and discarded.
It should be clear that the untimely emergence of the old segment would

have caused no difficulty if the sequence numbers had not yet wrapped around.
The larger the sequence number space (number of bits used to represent the
sequence number), the longer the wraparound is avoided. How big must the
sequence space be? This depends on, among other things, whether the network
enforces a maximum packet lifetime, and the rate at which segments are being
transmitted. Fortunately, each addition of a single bit to the sequence number
field doubles the sequence space, so it is rather easy to select a safe size.

Flow Control The credit allocation flow control mechanism described earlier is
quite robust in the face of an unreliable network service and requires little enhance-
ment. As was mentioned, a segment containing acknowledges all
octets through number and grants credit for an additional j octets beginning
with octet i. The credit allocation mechanism is quite flexible. For example, suppose
that the last octet of data received by B was octet number and that the last
segment issued by B was Then

• To increase credit to an amount when no additional data have
arrived, B issues 

• To acknowledge an incoming segment containing m octets of data 
without granting additional credit, B issues 1AN = i + m, W = j - m2.1m 6 j2

1AN = i, W = k2.k 1k 7 j2
1AN = i, W = j2. i - 1

i - 1
1AN = i, W = j2

SN = 1
SN = 1

SN = 1SN = 1

AN = 601.
SN = 201,AN = 601.

SN = 1
SN = 1.

SN = 1SN = 401,
SN = 201SN = 1,

SN = 1.
SN = 1600,
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Transport
Entity A

Transport
Entity B

A times out and
retransmits SN � 201

Obsolete SN � 1
arrives

A times out and
retransmits SN � 1

AN � 601, W � 600

AN � 601, W � 600

AN � 801, W � 600

AN � 1001, W � 600

AN � 1201, W � 600

AN � 1401, W � 600

AN � 1, W � 600

AN � 201, W � 600

SN � 201

SN � 401

SN � 1

SN � 201

SN � 601

SN � 801

SN � 1001

SN � 1201

SN � 1401

SN � 1

SN
�

 1

Figure 20.5 Example of Incorrect Duplicate Detection

If an ACK/CREDIT segment is lost, little harm is done. Future acknowledg-
ments will resynchronize the protocol. Further, if no new acknowledgments are
forthcoming, the sender times out and retransmits a data segment, which triggers a
new acknowledgment. However, it is still possible for deadlock to occur. Consider a
situation in which B sends temporarily closing the window. Sub-
sequently, B sends but this segment is lost. A is awaiting the
opportunity to send data and B thinks that it has granted that opportunity. To over-
come this problem, a persist timer can be used.This timer is reset with each outgoing
segment (all segments contain the AN and W fields). If the timer ever expires, the
protocol entity is required to send a segment, even if it duplicates a previous one.This
breaks the deadlock and assures the other end that the protocol entity is still alive.

1AN = i, W = j2,1AN = i, W = 02,
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Connection Establishment As with other protocol mechanisms,connection estab-
lishment must take into account the unreliability of a network service. Recall that a con-
nection establishment calls for the exchange of SYNs, a procedure sometimes referred
to as a two-way handshake. Suppose that A issues a SYN to B. It expects to get a SYN
back, confirming the connection. Two things can go wrong: A’s SYN can be lost or B’s
answering SYN can be lost.Both cases can be handled by use of a retransmit-SYN timer
(Table 20.1).After A issues a SYN, it will reissue the SYN when the timer expires.

This gives rise, potentially, to duplicate SYNs. If A’s initial SYN was lost, there
are no duplicates. If B’s response was lost, then B may receive two SYNs from A.
Further, if B’s response was not lost, but simply delayed, A may get two responding
SYNs. All of this means that A and B must simply ignore duplicate SYNs once a
connection is established.

There are other problems to contend with. Just as a delayed SYN or lost response
can give rise to a duplicate SYN, a delayed data segment or lost acknowledgment can
give rise to duplicate data segments, as we have seen in Figure 20.5. Such a delayed or
duplicated data segment can interfere with data transfer, as illustrated in Figure 20.6.

A initiates a connection

New connection opened

A begins transmission

B accepts and acknowledges

Connection closed

Obsolete segment SN � 401 is accepted;
valid segment SN � 401 is discarded as duplicate

A B
SYN

SYN

SYN

SYN

SN � 1

SN
�

 401

SN � 201

SN � 1

SN � 201

SN � 401

Figure 20.6 The Two-Way Handshake: Problem with Obsolete Data
Segment
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Assume that with each new connection, each transport protocol entity begins number-
ing its data segments with sequence number 1. In the figure, a duplicate copy of segment

from an old connection arrives during the lifetime of a new connection and
is delivered to B before delivery of the legitimate data segment One way of
attacking this problem is to start each new connection with a different sequence number
that is far removed from the last sequence number of the most recent connection. For
this purpose, the connection request is of the form SYN where i is the sequence
number of the first data segment that will be sent on this connection.

Now consider that a duplicate SYN i may survive past the termination of the
connection. Figure 20.7 depicts the problem that may arise. An old SYN i arrives
at B after the connection is terminated. B assumes that this is a fresh request and
responds with SYN j, meaning that B accepts the connection request and will begin
transmitting with Meanwhile, A has decided to open a new connec-
tion with B and sends SYN k. B discards this as a duplicate. Now both sides have
transmitted and subsequently received a SYN segment, and therefore think that a
valid connection exists. However, when A initiates data transfer with a segment
numbered B rejects the segment as being out of sequence.

The way out of this problem is for each side to acknowledge explicitly the
other’s SYN and sequence number. The procedure is known as a three-way hand-
shake. The revised connection state diagram, which is the one employed by TCP, is
shown in the upper part of Figure 20.8. A new state (SYN RECEIVED) is added.
In this state, the transport entity hesitates during connection opening to assure that
the SYN segments sent by the two sides have both been acknowledged before the
connection is declared established. In addition to the new state, there is a control
segment (RST) to reset the other side when a duplicate SYN is detected.

Figure 20.9 illustrates typical three-way handshake operations. In Figure 20.9a,
transport entity A initiates the connection, with a SYN including the sending

k + 1.

SN = j + 1.

i + 1,

SN = 401.
SN = 401

A B

Obsolete SYN i arrives

Connection closed

B responds; A sends new SYN

B discards duplicate SYN

B rejects segment as out of sequence

SYN i

SYN k SYN j

SN � k � 1

Figure 20.7 Two-Way Handshake: Problem with Obsolete SYN Segments
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sequence number, i. The value i is referred to as the initial sequence number (ISN)
and is associated with the SYN; the first data octet to be transmitted will have
sequence number The responding SYN acknowledges the ISN with

and includes its ISN. A acknowledges B’s SYN/ACK in its first data
segment, which begins with sequence number Figure 20.9b shows a situation
in which an old SYN i arrives at B after the close of the relevant connection. B
assumes that this is a fresh request and responds with SYN j, When A
receives this message, it realizes that it has not requested a connection and therefore
sends an RST, Note that the portion of the RST message is essen-
tial so that an old duplicate RST does not abort a legitimate connection establish-
ment. Figure 20.9c shows a case in which an old SYN/ACK arrives in the middle of

AN = jAN = j.

AN = i + 1.

i + 1.
1AN = i + 12 i + 1.

LISTEN

CLOSE WAIT

LAST ACK

CLOSED

CLOSED

SYN RECEIVED

ESTAB

CLOSING

TIME WAIT

SYN SENT

FIN WAIT

FIN WAIT2

Receive
ACK of SYN

Receive
ACK of SYN

Receive
ACK of FIN

Receive
ACK of FIN

SV     = state vector
MSL = maximum segment lifetime

Active open or
active open with data

Initialize SV; send SYN

Close
Clear SV

Close
Send FIN

Close
Send FIN

Unspecified passive open or
fully specified passive open

Initialize SV

Close
Clear SV

Receive SYN
Send SYN, ACK

Timeout
(2 MSL)

Receive SYN, ACK
Send ACK

Receive FIN, ACK of SYN
Send ACK

Receive FIN
Send ACK

Receive FIN
Send ACK

Receive FIN
Send ACK

Receive FIN, ACK
Send ACK

Receive SYN
Send SYN, ACK

Figure 20.8 TCP Entity State Diagram
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a new connection establishment. Because of the use of sequence numbers in the
acknowledgments, this event causes no mischief.

For simplicity, the upper part of Figure 20.8 does not include transitions in which
RST is sent. The basic rule is as follows: Send an RST if the connection state is not yet
OPEN and an invalid ACK (one that does not reference something that was sent) is
received. The reader should try various combinations of events to see that this connec-
tion establishment procedure works in spite of any combination of old and lost segments.

Connection Termination The state diagram of Figure 20.3 defines the use of a
simple two-way handshake for connection establishment, which was found to be unsat-
isfactory in the face of an unreliable network service. Similarly, the two-way handshake

(a) Normal operation

A initiates a connection

A initiates a connection
Old SYN arrives at A; A rejects

A acknowledges and begins transmission

A acknowledges and begins transmission

B accepts and acknowledges

(b) Delayed SYN

(c) Delayed SYN, ACK

Obsolete SYN arrives

A rejects B's connection

B accepts and acknowledges

B accepts and acknowledges

A B
SYN i

SN � i � 1, AN � j � 1 

RST, AN � j

SN i � 1, AN � j � 1

RST, AN � k

SYN i

SYN j, AN � i � 1

SYN i

SYN j, AN � i � 1

SYN k, AN � p

SYN j, AN � i �
 1

Figure 20.9 Examples of Three-Way Handshake
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defined in that diagram for connection termination is inadequate for an unreliable net-
work service. Misordering of segments could cause the following scenario.A transport
entity in the CLOSE WAIT state sends its last data segment, followed by a FIN seg-
ment, but the FIN segment arrives at the other side before the last data segment. The
receiving transport entity will accept that FIN, close the connection, and lose the last
segment of data.To avoid this problem, a sequence number can be associated with the
FIN, which can be assigned the next sequence number after the last octet of transmit-
ted data.With this refinement, the receiving transport entity, upon receiving a FIN, will
wait if necessary for the late-arriving data before closing the connection.

A more serious problem is the potential loss of segments and the potential pres-
ence of obsolete segments. Figure 20.8 shows that the termination procedure adopts a
similar solution to that used for connection establishment. Each side must explicitly
acknowledge the FIN of the other, using an ACK with the sequence number of the
FIN to be acknowledged. For a graceful close, a transport entity requires the following:

• It must send a FIN i and receive 

• It must receive a FIN j and send 

• It must wait an interval equal to twice the maximum expected segment lifetime.

Failure Recovery When the system upon which a transport entity is running
fails and subsequently restarts, the state information of all active connections is lost.
The affected connections become half open because the side that did not fail does
not yet realize the problem.

The still active side of a half-open connection can close the connection using a
keepalive timer. This timer measures the time the transport machine will continue to
await an acknowledgment (or other appropriate reply) of a transmitted segment after
the segment has been retransmitted the maximum number of times. When the timer
expires, the transport entity assumes that the other transport entity or the intervening
network has failed, closes the connection, and signals an abnormal close to the TS user.

In the event that a transport entity fails and quickly restarts, half-open connec-
tions can be terminated more quickly by the use of the RST segment.The failed side
returns an RST i to every segment i that it receives. When the RST i reaches the
other side, it must be checked for validity based on the sequence number i, because
the RST could be in response to an old segment. If the reset is valid, the transport
entity performs an abnormal termination.

These measures clean up the situation at the transport level. The decision as
to whether to reopen the connection is up to the TS users. The problem is one of
synchronization. At the time of failure, there may have been one or more outstand-
ing segments in either direction. The TS user on the side that did not fail knows
how much data it has received, but the other user may not, if state information
were lost. Thus, there is the danger that some user data will be lost or duplicated.

20.2 TCP

In this section we look at TCP (RFC 793), first at the service it provides to the TS
user and then at the internal protocol details.

AN = j + 1.

AN = i + 1.
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TCP Services

TCP is designed to provide reliable communication between pairs of processes
(TCP users) across a variety of reliable and unreliable networks and internets. TCP
provides two useful facilities for labeling data: push and urgent:

• Data stream push: Ordinarily, TCP decides when sufficient data have accu-
mulated to form a segment for transmission. The TCP user can require TCP
to transmit all outstanding data up to and including that labeled with a push
flag. On the receiving end, TCP will deliver these data to the user in the
same manner. A user might request this if it has come to a logical break in
the data.

• Urgent data signaling: This provides a means of informing the destination
TCP user that significant or “urgent” data is in the upcoming data stream. It is
up to the destination user to determine appropriate action.

As with IP, the services provided by TCP are defined in terms of primitives and
parameters.The services provided by TCP are considerably richer than those provided
by IP, and hence the set of primitives and parameters is more complex. Table 20.2 lists
TCP service request primitives, which are issued by a TCP user to TCP, and Table 20.3
lists TCP service response primitives, which are issued by TCP to a local TCP user.

Table 20.2 TCP Service Request Primitives

Primitive Parameters Description

Unspecified source-port, [timeout], [timeout-action], Listen for connection attempt at
Passive Open [precedence], [security-range] specified security and precedence 

from any remote destination.

Fully Specified source-port, destination-port, destination- Listen for connection attempt at specified
Passive Open address, [timeout], [timeout-action], security and precedence from specified

[precedence], [security-range] destination.

Active Open source-port, destination-port, destination- Request connection at a particular
address, [timeout], [timeout-action], security and precedence to a specified
[precedence], [security] destination.

Active Open source-port, destination-port, destination- Request connection at a particular
with Data address, [timeout], [timeout-action], security and precedence to a specified

[precedence], [security], data, data-length, destination and transmit data with the
PUSH-flag, URGENT-flag request.

Send local-connection-name, data, data-length, Transfer data across named connection.
PUSH-flag, URGENT-flag, [timeout],
[timeout-action]

Allocate local-connection-name, data-length Issue incremental allocation for receive
data to TCP.

Close local-connection-name Close connection gracefully.

Abort local-connection-name Close connection abruptly.

Status local-connection-name Query connection status.

Note: Square brackets indicate optional parameters.
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Table 20.4 provides a brief definition of the parameters involved. The two passive 
open commands signal the TCP user’s willingness to accept a connection request. The
active open with data allows the user to begin transmitting data with the opening of
the connection.

TCP Header Format

TCP uses only a single type of protocol data unit, called a TCP segment. The header
is shown in Figure 20.10. Because one header must serve to perform all protocol
mechanisms, it is rather large, with a minimum length of 20 octets. The fields are as
follows:

• Source Port (16 bits): Source TCP user. Example values are Telnet � 23;
A complete list is maintained at http://www.iana.org/

assignments/port-numbers.

• Destination Port (16 bits): Destination TCP user.

• Sequence Number (32 bits): Sequence number of the first data octet in this
segment except when the SYN flag is set. If SYN is set, this field contains the
initial sequence number (ISN) and the first data octet in this segment has
sequence number ISN + 1.

TFTP = 69; HTTP = 80.

Table 20.3 TCP Service Response Primitives

Primitive Parameters Description

Open ID local-connection-name, source-port, Informs TCP user of connection name 
destination-port, destination-address assigned to pending connection 

requested in an Open primitive

Open Failure local-connection-name Reports failure of an Active Open request

Open Success local-connection-name Reports completion of pending Open request

Deliver local-connection-name, data, data-length, Reports arrival of data
URGENT-flag

Closing local-connection-name Reports that remote TCP user has issued a
Close and that all data sent by remote user
has been delivered

Terminate local-connection-name, description Reports that the connection has been termi-
nated; a description of the reason for 
termination is provided

Status local-connection-name, source-port, Reports current status of connection
Response source-address, destination-port,

destination-address, connection-state,
receive-window, send-window, amount-
awaiting-ACK, amount-awaiting-receipt,
urgent-state, precedence, security, timeout

Error local-connection-name, description Reports service-request or internal error

Not used for Unspecified Passive Open.=…

……
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• Acknowledgment Number (32 bits): Contains the sequence number of the
next data octet that the TCP entity expects to receive.

• Data Offset (4 bits): Number of 32-bit words in the header.

• Reserved (4 bits): Reserved for future use.

• Flags (6 bits): For each flag, if set to 1, the meaning is

CWR: congestion window reduced.

ECE: ECN-Echo; the CWR and ECE bits, defined in RFC 3168, are used for
the explicit congestion notification function; a discussion of this function is
beyond our scope.

URG: urgent pointer field significant.

Table 20.4 TCP Service Parameters

Source Port Local TCP user

Timeout Longest delay allowed for data delivery before automatic connection termi-
nation or error report; user specified

Timeout-action Indicates whether the connection is terminated or an error is reported to the
TCP user in the event of a timeout

Precedence Precedence level for a connection. Takes on values zero (lowest) through
seven (highest); same parameter as defined for IP

Security-range Allowed ranges in compartment, handling restrictions, transmission control
codes, and security levels

Destination Port Remote TCP user

Destination Address Internet address of remote host

Security Security information for a connection, including security level, compartment,
handling restrictions, and transmission control code; same parameter as
defined for IP

Data Block of data sent by TCP user or delivered to a TCP user

Data Length Length of block of data sent or delivered

PUSH flag If set, indicates that the associated data are to be provided with the data
stream push service

URGENT flag If set, indicates that the associated data are to be provided with the urgent
data signaling service

Local Connection Name Identifier of a connection defined by a (local socket, remote socket) pair;
provided by TCP

Description Supplementary information in a Terminate or Error primitive

Source Address Internet address of the local host

Connection State State of referenced connection (CLOSED, ACTIVE OPEN, PASSIVE
OPEN, ESTABLISHED, CLOSING)

Receive Window Amount of data in octets the local TCP entity is willing to receive

Send Window Amount of data in octets permitted to be sent to remote TCP entity

Amount Awaiting ACK Amount of previously transmitted data awaiting acknowledgment

Amount Awaiting Receipt Amount of data in octets buffered at local TCP entity pending receipt by
local TCP user

Urgent State Indicates to the receiving TCP user whether there are urgent data available
or whether all urgent data, if any, have been delivered to the user
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ACK: acknowledgment field significant.

PSH: push function.

RST: reset the connection.

SYN: synchronize the sequence numbers.

FIN: no more data from sender.

• Window (16 bits): Flow control credit allocation, in octets. Contains the num-
ber of data octets, beginning with the sequence number indicated in the
acknowledgment field that the sender is willing to accept.

• Checksum (16 bits): The ones complement of the ones complement sum of all
the 16-bit words in the segment plus a pseudoheader, described subsequently.2

• Urgent Pointer (16 bits): This value, when added to the segment sequence
number, contains the sequence number of the last octet in a sequence of
urgent data.This allows the receiver to know how much urgent data is coming.

• Options (Variable): An example is the option that specifies the maximum seg-
ment size that will be accepted.

The Sequence Number and Acknowledgment Number are bound to octets
rather than to entire segments. For example, if a segment contains sequence num-
ber 1001 and includes 600 octets of data, the sequence number refers to the first
octet in the data field; the next segment in logical order will have sequence num-
ber 1601. Thus, TCP is logically stream oriented: It accepts a stream of octets from
the user, groups them into segments as it sees fit, and numbers each octet in the
stream.

The Checksum field applies to the entire segment plus a pseudoheader pre-
fixed to the header at the time of calculation (at both transmission and reception).
The pseudoheader includes the following fields from the IP header: source and des-
tination internet address and protocol, plus a segment length field. By including the
pseudoheader, TCP protects itself from misdelivery by IP. That is, if IP delivers a
packet to the wrong host, even if the packet contains no bit errors, the receiving TCP
entity will detect the delivery error.

By comparing the TCP header to the TCP user interface defined in Tables 20.2
and 20.3, the reader may feel that some items are missing from the TCP header; that
is indeed the case. TCP is intended to work with IP. Hence, some TCP user parame-
ters are passed down by TCP to IP for inclusion in the IP header. The precedence
parameter can be mapped into the DS (Differentiated Services) field, and the secu-
rity parameter into the optional security field in the IP header.

It is worth observing that this TCP/IP linkage means that the required mini-
mum overhead for every data unit is actually 40 octets.

TCP Mechanisms

We can group TCP mechanisms into the categories of connection establishment,
data transfer, and connection termination.

2A discussion of this checksum is contained in Appendix K.
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Connection Establishment Connection establishment in TCP always uses a
three-way handshake. When the SYN flag is set, the segment is essentially a request
for connection and functions as explained in Section 20.1. To initiate a connection,
an entity sends a SYN, where X is the initial sequence number. The
receiver responds with SYN, by setting both the SYN and
ACK flags. Note that the acknowledgment indicates that the receiver is now expect-
ing to receive a segment beginning with data octet acknowledging the SYN,
which occupies Finally, the initiator responds with If the
two sides issue crossing SYNs, no problem results: Both sides respond with
SYN/ACKs (Figure 20.4).

A connection is uniquely determined by the source and destination sockets
(host, port). Thus, at any one time, there can only be a single TCP connection
between a unique pair of ports. However, a given port can support multiple connec-
tions, each with a different partner port.

Data Transfer Although data are transferred in segments over a transport con-
nection, data transfer is viewed logically as consisting of a stream of octets. Hence
every octet is numbered, modulo Each segment contains the sequence number
of the first octet in the data field. Flow control is exercised using a credit allocation
scheme in which the credit is a number of octets rather than a number of segments,
as explained in Section 20.1.

Data are buffered by the transport entity on both transmission and reception.
TCP normally exercises its own discretion as to when to construct a segment for
transmission and when to release received data to the user.The PUSH flag is used to
force the data so far accumulated to be sent by the transmitter and passed on by the
receiver. This serves an end-of-block function.

The user may specify a block of data as urgent. TCP will designate the end of
that block with an urgent pointer and send it out in the ordinary data stream. The
receiving user is alerted that urgent data are being received.

If, during data exchange, a segment arrives that is apparently not meant for the
current connection, the RST flag is set on an outgoing segment. Examples of this sit-
uation are delayed duplicate SYNs and an acknowledgment of data not yet sent.

Connection Termination The normal means of terminating a connection is a
graceful close. Each TCP user must issue a CLOSE primitive. The transport entity
sets the FIN bit on the last segment that it sends out, which also contains the last of
the data to be sent on this connection.

An abrupt termination occurs if the user issues an ABORT primitive. In this
case, the entity abandons all attempts to send or receive data and discards data in its
transmission and reception buffers. An RST segment is sent to the other side.

TCP Implementation Policy Options

The TCP standard provides a precise specification of the protocol to be used
between TCP entities. However, certain aspects of the protocol admit several possi-
ble implementation options. Although two implementations that choose alternative
options will be interoperable, there may be performance implications. The design
areas for which options are specified are the following:

232.

AN = Y + 1.SN = X.
X + 1,

SN = Y, AN = X + 1
SN = X,
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• Send policy

• Deliver policy

• Accept policy

• Retransmit policy

• Acknowledge policy

Send Policy In the absence of both pushed data and a closed transmission win-
dow (see Figure 20.2a), a sending TCP entity is free to transmit data at its own con-
venience, within its current credit allocation. As data are issued by the user, they are
buffered in the transmit buffer.TCP may construct a segment for each batch of data
provided by its user or it may wait until a certain amount of data accumulates before
constructing and sending a segment. The actual policy will depend on performance
considerations. If transmissions are infrequent and large, there is low overhead in
terms of segment generation and processing. On the other hand, if transmissions are
frequent and small, the system is providing quick response.

Deliver Policy In the absence of a Push, a receiving TCP entity is free to deliver
data to the user at its own convenience. It may deliver data as each in-order segment
is received, or it may buffer data from a number of segments in the receive buffer
before delivery. The actual policy will depend on performance considerations. If
deliveries are infrequent and large, the user is not receiving data as promptly as may
be desirable. On the other hand, if deliveries are frequent and small, there may be
unnecessary processing both in TCP and in the user software, as well as an unneces-
sary number of operating system interrupts.

Accept Policy When all data segments arrive in order over a TCP connection,
TCP places the data in a receive buffer for delivery to the user. It is possible, how-
ever, for segments to arrive out of order. In this case, the receiving TCP entity has
two options:

• In-order: Accept only segments that arrive in order; any segment that arrives
out of order is discarded.

• In-window: Accept all segments that are within the receive window (see
Figure 20.2b).

The in-order policy makes for a simple implementation but places a burden on
the networking facility, as the sending TCP must time out and retransmit segments
that were successfully received but discarded because of misordering. Furthermore,
if a single segment is lost in transit, then all subsequent segments must be retrans-
mitted once the sending TCP times out on the lost segment.

The in-window policy may reduce transmissions but requires a more complex
acceptance test and a more sophisticated data storage scheme to buffer and keep
track of data accepted out of order.

Retransmit Policy TCP maintains a queue of segments that have been sent but
not yet acknowledged. The TCP specification states that TCP will retransmit a seg-
ment if it fails to receive an acknowledgment within a given time.A TCP implemen-
tation may employ one of three retransmission strategies:
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• First-only: Maintain one retransmission timer for the entire queue. If an
acknowledgment is received, remove the appropriate segment or segments
from the queue and reset the timer. If the timer expires, retransmit the seg-
ment at the front of the queue and reset the timer.

• Batch: Maintain one retransmission timer for the entire queue. if an acknowl-
edgment is received, remove the appropriate segment or segments from the
queue and reset the timer. If the timer expires, retransmit all segments in the
queue and reset the timer.

• Individual: Maintain one timer for each segment in the queue. If an acknowl-
edgment is received, remove the appropriate segment or segments from the
queue and destroy the corresponding timer or timers. If any timer expires,
retransmit the corresponding segment individually and reset its timer.

The first-only policy is efficient in terms of traffic generated, because only lost
segments (or segments whose ACK was lost) are retransmitted. Because the timer
for the second segment in the queue is not set until the first segment is acknowl-
edged, however, there can be considerable delays. The individual policy solves this
problem at the expense of a more complex implementation. The batch policy also
reduces the likelihood of long delays but may result in unnecessary retransmissions.

The actual effectiveness of the retransmit policy depends in part on the accept
policy of the receiver. If the receiver is using an in-order accept policy, then it will
discard segments received after a lost segment. This fits best with batch retransmis-
sion. If the receiver is using an in-window accept policy, then a first-only or individ-
ual retransmission policy is best. Of course, in a mixed network of computers, both
accept policies may be in use.

Acknowledge Policy When a data segment arrives that is in sequence, the
receiving TCP entity has two options concerning the timing of acknowledgment:

• Immediate: When data are accepted, immediately transmit an empty (no data)
segment containing the appropriate acknowledgment number.

• Cumulative: When data are accepted, record the need for acknowledgment,
but wait for an outbound segment with data on which to piggyback the
acknowledgment. To avoid long delay, set a persist timer (Table 20.1); if the
timer expires before an acknowledgment is sent, transmit an empty segment
containing the appropriate acknowledgment number.

The immediate policy is simple and keeps the remote TCP entity fully
informed, which limits unnecessary retransmissions. However, this policy results in
extra segment transmissions, namely, empty segments used only to ACK. Further-
more, the policy can cause a further load on the network. Consider that a TCP entity
receives a segment and immediately sends an ACK. Then the data in the segment
are released to the application, which expands the receive window, triggering
another empty TCP segment to provide additional credit to the sending TCP entity.

Because of the potential overhead of the immediate policy, the cumulative
policy is typically used. Recognize, however, that the use of this policy requires more
processing at the receiving end and complicates the task of estimating round-trip
time by the sending TCP entity.



20.3 / TCP CONGESTION CONTROL 683

20.3 TCP CONGESTION CONTROL

The credit-based flow control mechanism of TCP was designed to enable a desti-
nation to restrict the flow of segments from a source to avoid buffer overflow at
the destination. This same flow control mechanism is now used in ingenious ways
to provide congestion control over the Internet between the source and destina-
tion. Congestion, as we have seen a number of times in this book, has two main
effects. First, as congestion begins to occur, the transit time across a network or
internetwork increases. Second, as congestion becomes severe, network or inter-
net nodes drop packets. The TCP flow control mechanism can be used to recog-
nize the onset of congestion (by recognizing increased delay times and dropped
segments) and to react by reducing the flow of data. If many of the TCP entities
operating across a network exercise this sort of restraint, internet congestion is
relieved.

Since the publication of RFC 793, a number of techniques have been imple-
mented that are intended to improve TCP congestion control characteristics.
Table 20.5 lists some of the most popular of these techniques. None of these tech-
niques extends or violates the original TCP standard; rather the techniques rep-
resent implementation policies that are within the scope of the TCP specification.
Many of these techniques are mandated for use with TCP in RFC 1122
(Requirements for Internet Hosts) while some of them are specified in RFC 2581.
The labels Tahoe, Reno, and NewReno refer to implementation packages avail-
able on many operating systems that support TCP. The techniques fall roughly
into two categories: retransmission timer management and window management.
In this section, we look at some of the most important and most widely imple-
mented of these techniques.

Retransmission Timer Management

As network or internet conditions change, a static retransmission timer is likely to
be either too long or too short. Accordingly, virtually all TCP implementations
attempt to estimate the current round-trip time by observing the pattern of delay

Table 20.5 Implementation of TCP Congestion Control Measures

Measure RFC 1122 TCP Tahoe TCP Reno NewReno

RTT Variance Estimation

Exponential RTO Backoff

Karn’s Algorithm

Slow Start

Dynamic Window Sizing 
on Congestion

Fast Retransmit

Fast Recovery

Modified Fast Recovery �

��

���

����

����

����

����

����
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for recent segments, and then set the timer to a value somewhat greater than the
estimated round-trip time.

Simple Average A simple approach is to take the average of observed round-trip
times over a number of segments. If the average accurately predicts future round-
trip times, then the resulting retransmission timer will yield good performance. The
simple averaging method can be expressed as

(20.1)

where RTT(i) is the round-trip time observed for the ith transmitted segment, and
ARTT(K) is the average round-trip time for the first K segments.

This expression can be rewritten as

(20.2)

With this formulation, it is not necessary to recalculate the entire summation each
time.

Exponential Average Note that each term in the summation is given equal
weight; that is, each term is multiplied by the same constant Typically, we
would like to give greater weight to more recent instances because they are more
likely to reflect future behavior. A common technique for predicting the next value
on the basis of a time series of past values, and the one specified in RFC 793, is expo-
nential averaging:

(20.3)

where SRTT(K) is called the smoothed round-trip time estimate, and we define
Compare this with Equation (20.2). By using a constant value of
independent of the number of past observations, we have a circum-

stance in which all past values are considered, but the more distant ones have less
weight.To see this more clearly, consider the following expansion of Equation (20.3):

Because both and are less than one, each successive term in the preceding
equation is smaller. For example, for the expansion is

The older the observation, the less it is counted in the average.
The smaller the value of the greater the weight given to the more recent

observations. For virtually all of the weight is given to the four or five
most recent observations, whereas for the averaging is effectively
spread out over the ten or so most recent observations. The advantage of using a
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small value of is that the average will quickly reflect a rapid change in 
the observed quantity. The disadvantage is that if there is a brief surge in the
value of the observed quantity and it then settles back to some relatively 
constant value, the use of a small value of will result in jerky changes in the
average.

Figure 20.11 compares simple averaging with exponential averaging (for two
different values of ). In part (a) of the figure, the observed value begins at 1, grows
gradually to a value of 10, and then stays there. In part (b) of the figure, the
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Figure 20.11 Use of Exponential Averaging
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observed value begins at 20, declines gradually to 10, and then stays there. Note
that exponential averaging tracks changes in RTT faster than does simple averag-
ing and that the smaller value of results in a more rapid reaction to the change in
the observed value.

Equation (20.3) is used in RFC 793 to estimate the current round-trip time.As
was mentioned, the retransmission timer should be set at a value somewhat greater
than the estimated round-trip time. One possibility is to use a constant value:

where RTO is the retransmission timer (also called the retransmission timeout)
and is a constant. The disadvantage of this is that is not proportional to
SRTT. For large values of SRTT, is relatively small and fluctuations in the
actual RTT will result in unnecessary retransmissions. For small values of SRTT,

is relatively large and causes unnecessary delays in retransmitting lost 
segments. Accordingly, RFC 793 specifies the use of a timer whose value is pro-
portional to SRTT, within limits:

(20.4)

where UBOUND and LBOUND are prechosen fixed upper and lower bounds on
the timer value and is a constant. RFC 793 does not recommend specific values
but does list as “example values” the following: between 0.8 and 0.9 and 
between 1.3 and 2.0.

RTT Variance Estimation (Jacobson’s Algorithm) The technique speci-
fied in the TCP standard, and described in Equations (20.3) and (20.4), enables a
TCP entity to adapt to changes in round-trip time. However, it does not cope well
with a situation in which the round-trip time exhibits a relatively high variance.
[ZHAN86] points out three sources of high variance:

1. If the data rate on the TCP connection is relatively low, then the transmission
delay will be relatively large compared to propagation time and the variance
in delay due to variance in IP datagram size will be significant.Thus, the SRTT
estimator is heavily influenced by characteristics that are a property of the
data and not of the network.

2. Internet traffic load and conditions may change abruptly due to traffic from
other sources, causing abrupt changes in RTT.

3. The peer TCP entity may not acknowledge each segment immediately because
of its own processing delays and because it exercises its privilege to use cumu-
lative acknowledgments.

The original TCP specification tries to account for this variability by multiply-
ing the RTT estimator by a constant factor, as shown in Equation (20.4). In a stable
environment, with low variance of RTT, this formulation results in an unnecessarily
high value of RTO, and in an unstable environment a value of may be inade-
quate to protect against unnecessary retransmissions.

A more effective approach is to estimate the variability in RTT values and to
use that as input into the calculation of an RTO.A variability measure that is easy to
estimate is the mean deviation, defined as

b = 2

ba

b

RTO1K + 12 = MIN1UBOUND, MAX1LBOUND, b * SRTT1K + 1222
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where E[X] is the expected value of X.
As with the estimate of RTT, a simple average could be used to estimate

MDEV:

where ARTT(K) is the simple average defined in Equation (20.1) and AERR(K) is
the sample mean deviation measured at time K.

As with the definition of ARRT, each term in the summation of ADEV is
given equal weight; that is, each term is multiplied by the same constant

Again, we would like to give greater weight to more recent instances
because they are more likely to reflect future behavior. Jacobson, who proposed
the use of a dynamic estimate of variability in estimating RTT [JACO88], sug-
gests using the same exponential smoothing technique as is used for the calcula-
tion of SRTT. The complete algorithm proposed by Jacobson can be expressed
as follows:

(20.5)

As in the RFC 793 definition [Equation (20.3)], SRTT is an exponentially
smoothed estimate of RTT, with equivalent to Now, however, instead of
multiplying the estimate SRTT by a constant [Equation (20.4)], a multiple of the
estimated mean deviation is added to SRTT to form the retransmission timer. Based
on his timing experiments, Jacobson proposed the following values for the constants
in his original paper [JACO88]:

After further research [JACO90a], Jacobson recommended using and this is
the value used in current implementations.

Figure 20.12 illustrates the use of Equation 20.5 on the same data set used
in Figure 20.11. Once the arrival times stabilize, the variation estimate SDEV
declines. The values of RTO for both and are quite conservative as
long as RTT is changing but then begin to converge to RTT when it stabilizes.

Experience has shown that Jacobson’s algorithm can significantly improve
TCP performance. However, it does not stand by itself. Two other factors must be
considered:
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Figure 20.12 Jacobson’s RTO Calculation

1. What RTO value should be used on a retransmitted segment? The exponential
RTO backoff algorithm is used for this purpose.

2. Which round-trip samples should be used as input to Jacobson’s algorithm?
Karn’s algorithm determines which samples to use.

Exponential RTO Backoff When a TCP sender times out on a segment, it
must retransmit that segment. RFC 793 assumes that the same RTO value will be
used for this retransmitted segment. However, because the timeout is probably due
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to network congestion, manifested as a dropped packet or a long delay in round-trip
time, maintaining the same RTO value is ill advised.

Consider the following scenario. There are a number of active TCP connec-
tions from various sources sending traffic into an internet. A region of congestion
develops such that segments on many of these connections are lost or delayed past
the RTO time of the connections. Therefore, at roughly the same time, many seg-
ments will be retransmitted into the internet, maintaining or even increasing the
congestion. All of the sources then wait a local (to each connection) RTO time and
retransmit yet again. This pattern of behavior could cause a sustained condition of
congestion.

A more sensible policy dictates that a sending TCP entity increase its RTO
each time a segment is retransmitted; this is referred to as a backoff process. In the
scenario of the preceding paragraph, after the first retransmission of a segment on
each affected connection, the sending TCP entities will all wait a longer time before
performing a second retransmission.This may give the internet time to clear the cur-
rent congestion. If a second retransmission is required, each sending TCP entity will
wait an even longer time before timing out for a third retransmission, giving the
internet an even longer period to recover.

A simple technique for implementing RTO backoff is to multiply the RTO for
a segment by a constant value for each retransmission:

(20.6)

Equation (20.6) causes RTO to grow exponentially with each retransmission. The
most commonly used value of q is 2. With this value, the technique is referred to as
binary exponential backoff. This is the same technique used in the Ethernet
CSMA/CD protocol (Chapter 16).

Karn’s Algorithm If no segments are retransmitted, the sampling process for
Jacobson’s algorithm is straightforward. The RTT for each segment can be included
in the calculation. Suppose, however, that a segment times out and must be retrans-
mitted. If an acknowledgment is subsequently received, there are two possibilities:

1. This is the ACK to the first transmission of the segment. In this case, the RTT is
simply longer than expected but is an accurate reflection of network conditions.

2. This is the ACK to the second transmission.

The sending TCP entity cannot distinguish between these two cases. If the sec-
ond case is true and the TCP entity simply measures the RTT from the first transmis-
sion until receipt of the ACK, the measured time will be much too long.The measured
RTT will be on the order of the actual RTT plus the RTO. Feeding this false RTT into
Jacobson’s algorithm will produce an unnecessarily high value of SRTT and therefore
RTO. Furthermore, this effect propagates forward a number of iterations, since the
SRTT value of one iteration is an input value in the next iteration.

An even worse approach would be to measure the RTT from the second trans-
mission to the receipt of the ACK. If this is in fact the ACK to the first transmission,
then the measured RTT will be much too small, producing a too low value of SRTT
and RTO.This is likely to have a positive feedback effect, causing additional retrans-
missions and additional false measurements.

RTO = q * RTO



690 CHAPTER 20 / TRANSPORT PROTOCOLS

3These algorithms were developed by Jacobson [JACO88] and are also described in RFC 2581. Jacobson
describes things in units of TCP segments, whereas RFC 2581 relies primarily on units of TCP data octets,
with some reference to calculations in units of segments. We follow the development in [JACO88].

Karn’s algorithm [KARN91] solves this problem with the following rules:

1. Do not use the measured RTT for a retransmitted segment to update SRTT
and SDEV [Equation (20.5)].

2. Calculate the backoff RTO using Equation (20.6) when a retransmission occurs.

3. Use the backoff RTO value for succeeding segments until an acknowledgment
arrives for a segment that has not been retransmitted.

When an acknowledgment is received to an unretransmitted segment, Jacob-
son’s algorithm is again activated to compute future RTO values.

Window Management

In addition to techniques for improving the effectiveness of the retransmission
timer, a number of approaches to managing the send window have been examined.
The size of TCP’s send window can have a critical effect on whether TCP can be
used efficiently without causing congestion. We discuss two techniques found in vir-
tually all modern implementations of TCP: slow start and dynamic window sizing on
congestion.3

Slow Start The larger the send window used in TCP, the more segments that a
sending TCP entity can send before it must wait for an acknowledgment. This can
create a problem when a TCP connection is first established, because the TCP entity
is free to dump the entire window of data onto the internet.

One strategy that could be followed is for the TCP sender to begin sending
from some relatively large but not maximum window, hoping to approximate the
window size that would ultimately be provided by the connection. This is risky
because the sender might flood the internet with many segments before it realized
from timeouts that the flow was excessive. Instead, some means is needed of gradu-
ally expanding the window until acknowledgments are received. This is the purpose
of the slow start mechanism.

With slow start, TCP transmission is constrained by the following relationship:

(20.7)

where
window, in segments. This is the number of segments that

TCP is currently allowed to send without receiving further acknowl-
edgments.

window, in segments. A window used by TCP during
startup and to reduce flow during periods of congestion.

amount of unused credit granted in the most recent acknowledg-
ment, in segments.When an acknowledgment is received, this value is
calculated as window/segment_size, where window is a field in the
incoming TCP segment (the amount of data the peer TCP entity is
willing to accept).

credit = the

cwnd = congestion

awnd = allowed

awnd = MIN[credit, cwnd]
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4Kleinrock refers to this phenomenon as the long-tail effect during a rush-hour period. See Sections 2.7
and 2.10 of [KLEI76] for a detailed discussion.

When a new connection is opened, the TCP entity initializes That
is, TCP is only allowed to send 1 segment and then must wait for an acknowledg-
ment before transmitting a second segment. Each time an acknowledgment to new
data is received, the value of cwnd is increased by 1, up to some maximum value.

In effect, the slow-start mechanism probes the internet to make sure that the
TCP entity is not sending too many segments into an already congested environ-
ment. As acknowledgments arrive, TCP is able to open up its window until the flow
is controlled by the incoming ACKs rather than by cwnd.

The term slow start is a bit of a misnomer, because cwnd actually grows expo-
nentially. When the first ACK arrives, TCP opens cwnd to 2 and can send two seg-
ments. When these two segments are acknowledged, TCP can slide the window 1
segment for each incoming ACK and can increase cwnd by 1 for each incoming
ACK. Therefore, at this point TCP can send four segments. When these four are
acknowledged, TCP will be able to send eight segments.

Dynamic Window Sizing on Congestion The slow-start algorithm has
been found to work effectively for initializing a connection. It enables the TCP
sender to determine quickly a reasonable window size for the connection. Might
not the same technique be useful when there is a surge in congestion? In particular,
suppose a TCP entity initiates a connection and goes through the slow-start proce-
dure. At some point, either before or after cwnd reaches the size of the credit allo-
cated by the other side, a segment is lost (timeout). This is a signal that congestion
is occurring. It is not clear how serious the congestion is. Therefore, a prudent pro-
cedure would be to reset and begin the slow-start process all over.

This seems like a reasonable, conservative procedure, but in fact it is not con-
servative enough. Jacobson [JACO88] points out that “it is easy to drive a network
into saturation but hard for the net to recover.” In other words, once congestion
occurs, it may take a long time for the congestion to clear.4 Thus, the exponential
growth of cwnd under slow start may be too aggressive and may worsen the conges-
tion. Instead, Jacobson proposed the use of slow start to begin with, followed by a
linear growth in cwnd. The rules are as follows. When a timeout occurs,

1. Set a slow-start threshold equal to half the current congestion window; that is,
set

2. Set and perform the slow-start process until In this
phase, cwnd is increased by 1 for every ACK received.

3. For increase cwnd by one for each round-trip time.

Figure 20.13 illustrates this behavior. Note that it takes 11 round-trip times to
recover to the cwnd level that initially took 4 round-trip times to achieve.

Fast Retransmit The retransmission timer (RTO) that is used by a sending TCP
entity to determine when to retransmit a segment will generally be noticeably
longer than the actual round-trip time (RTT) that the ACK for that segment will
take to reach the sender. Both the original RFC 793 algorithm and the Jacobson

cwnd Ú ssthresh,

cwnd = ssthresh.cwnd = 1

ssthresh = cwnd/2.

cwnd = 1

cwnd = 1.
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Figure 20.13 Illustration of Slow Start and Congestion Avoidance

algorithm set the value of RTO at somewhat greater than the estimated round-trip
time SRTT. Several factors make this margin desirable:

1. RTO is calculated on the basis of a prediction of the next RTT, estimated from
past values of RTT. If delays in the network fluctuate, then the estimated RTT
may be smaller than the actual RTT.

2. Similarly, if delays at the destination fluctuate, the estimated RTT becomes
unreliable.

3. The destination system may not ACK each segment but cumulatively ACK
multiple segments, while at the same time sending ACKs when it has any data
to send. This behavior contributes to fluctuations in RTT.

A consequence of these factors is that if a segment is lost, TCP may be slow to
retransmit. If the destination TCP is using an in-order accept policy (see Section
6.3), then many segments may be lost. Even in the more likely case that the destina-
tion TCP is using an in-window accept policy, a slow retransmission can cause prob-
lems. To see this, suppose that A transmits a sequence of segments, the first of which
is lost. So long as its send window is not empty and RTO does not expire,A can con-
tinue to transmit without receiving an acknowledgment. B receives all of these seg-
ments except the first. But B must buffer all of these incoming segments until the
missing one is retransmitted; it cannot clear its buffer by sending the data to an
application until the missing segment arrives. If retransmission of the missing seg-
ment is delayed too long, B will have to begin discarding incoming segments.

Jacobson [JACO90b] proposed two procedures, called fast retransmit and fast
recovery, that under some circumstances improve on the performance provided by
RTO. Fast retransmit takes advantage of the following rule in TCP. If a TCP entity
receives a segment out of order, it must immediately issue an ACK for the last in-order
segment that was received. TCP will continue to repeat this ACK with each incoming
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segment until the missing segment arrives to “plug the hole” in its buffer.When the hole
is plugged,TCP sends a cumulative ACK for all of the in-order segments received so far.

When a source TCP receives a duplicate ACK, it means that either (1) the seg-
ment following the ACKed segment was delayed so that it ultimately arrived out of
order, or (2) that segment was lost. In case (1), the segment does ultimately arrive
and therefore TCP should not retransmit. But in case (2) the arrival of a duplicate
ACK can function as an early warning system to tell the source TCP that a segment
has been lost and must be retransmitted. To make sure that we have case (2) rather
than case (1), Jacobson recommends that a TCP sender wait until it receives three
duplicate ACKs to the same segment (that is, a total of four ACKs to the same seg-
ment). Under these circumstances, it is highly likely that the following segment has
been lost and should be retransmitted immediately, rather than waiting for a timeout.

Fast Recovery When a TCP entity retransmits a segment using fast retransmit, it
knows (or rather assumes) that a segment was lost, even though it has not yet timed
out on that segment. Accordingly, the TCP entity should take congestion avoidance
measures. One obvious strategy is the slow-start/congestion avoidance procedure
used when a timeout occurs. That is, the entity could set ssthresh to cwnd/2, set

and begin the exponential slow-start process until and
then increase cwnd linearly. Jacobson [JACO90b] argues that this approach is
unnecessarily conservative. As was just pointed out, the very fact that multiple
ACKs have returned indicates that data segments are getting through fairly regu-
larly to the other side. So Jacobson proposes a fast recovery technique: retransmit
the lost segment, cut cwnd in half, and then proceed with the linear increase of cwnd.
This technique avoids the initial exponential slow-start process.

RFC 2582 (The NewReno Modification to TCP’s Fast Recovery Mechanism)
modifies the fast recovery algorithm to improve the response when two segments
are lost within a single window. Using fast retransmit, a sender retransmits a seg-
ment before timeout because it infers that the segment was lost. If the sender subse-
quently receives an acknowledgement that does not cover all of the segments
transmitted before fast retransmit was initiated, the sender may infer that two seg-
ments were lost from the current window and retransmit an additional segment.The
details of both fast recovery and modified fast recovery are complex; the reader is
referred to RFCs 2581 and 2582.

20.4 UDP

In addition to TCP, there is one other transport-level protocol that is in common use
as part of the TCP/IP protocol suite: the user datagram protocol (UDP), specified in
RFC 768. UDP provides a connectionless service for application-level procedures.
Thus, UDP is basically an unreliable service; delivery and duplicate protection are
not guaranteed. However, this does reduce the overhead of the protocol and may be
adequate in many cases. An example of the use of UDP is in the context of network
management, as described in Chapter 22.

The strengths of the connection-oriented approach are clear. It allows connec-
tion-related features such as flow control, error control, and sequenced delivery.
Connectionless service, however, is more appropriate in some contexts. At lower

cwnd = ssthresh,cwnd = 1
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layers (internet, network), a connectionless service is more robust (e.g., see discus-
sion in Section 10.5). In addition, it represents a “least common denominator” of
service to be expected at higher layers. Further, even at transport and above there is
justification for a connectionless service. There are instances in which the overhead
of connection establishment and termination is unjustified or even counterproduc-
tive. Examples include the following:

• Inward data collection: Involves the periodic active or passive sampling of
data sources, such as sensors, and automatic self-test reports from security
equipment or network components. In a real-time monitoring situation, the
loss of an occasional data unit would not cause distress, because the next
report should arrive shortly.

• Outward data dissemination: Includes broadcast messages to network users,
the announcement of a new node or the change of address of a service, and the
distribution of real-time clock values.

• Request-response: Applications in which a transaction service is provided by a
common server to a number of distributed TS users, and for which a single
request-response sequence is typical. Use of the service is regulated at the appli-
cation level, and lower-level connections are often unnecessary and cumbersome.

• Real-time applications: Such as voice and telemetry, involving a degree of
redundancy and/or a real-time transmission requirement.These must not have
connection-oriented functions such as retransmission.

Thus, there is a place at the transport level for both a connection-oriented and
a connectionless type of service.

UDP sits on top of IP. Because it is connectionless, UDP has very little to do.
Essentially, it adds a port addressing capability to IP.This is best seen by examining the
UDP header, shown in Figure 20.14. The header includes a source port and destina-
tion port. The Length field contains the length of the entire UDP segment, including
header and data. The checksum is the same algorithm used for TCP and IP. For UDP,
the checksum applies to the entire UDP segment plus a pseudoheader prefixed to the
UDP header at the time of calculation and which is the same pseudoheader used for
TCP. If an error is detected, the segment is discarded and no further action is taken.

The Checksum field in UDP is optional. If it is not used, it is set to zero. How-
ever, it should be pointed out that the IP checksum applies only to the IP header
and not to the data field, which in this case consists of the UDP header and the user
data. Thus, if no checksum calculation is performed by UDP, then no check is made
on the user data at either the transport or internet protocol layers.
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20.5 RECOMMENDED READING AND WEB SITES

[IREN99] is a comprehensive survey of transport protocol services and protocol mecha-
nisms, with a brief discussion of a number of different transport protocols. Perhaps the
best coverage of the various TCP strategies for flow and congestion control is to be found
in [STEV94]. An essential paper for understanding the issues involved is the classic
[JACO88].

checksum
credit
data stream push
duplicate detection
exponential average
flow control
Karn’s algorithm
multiplexing

port
retransmission strategy
sequence number
slow start
socket
TCP congestion control
TCP implementation policy

options

Transmission Control Protocol
(TCP)

transport protocol
urgent data signaling
User Datagram Protocol (UDP)

IREN99 Iren, S.; Amer, P.; and Conrad, P. “The Transport Layer: Tutorial and Survey.”
ACM Computing Surveys, December 1999.

JACO88 Jacobson, V. “Congestion Avoidance and Control.” Proceedings, SIGCOMM
’88, Computer Communication Review, August 1988; reprinted in Computer Com-
munication Review, January 1995; a slightly revised version is available at
ftp.ee.lbl.gov/papers/congavoid.ps.Z

STEV94 Stevens, W. TCP/IP Illustrated, Volume 1: The Protocols. Reading, MA:
Addison-Wesley, 1994.

Recommended Web sites:

• Center for Internet Research: One of the most active groups in the areas covered in
this chapter. The site contains many papers and useful pointers.

• TCP Maintenance Working Group: Chartered by IETF to make minor revisions to
TCP and to update congestion strategies and protocols. The Web site includes all rele-
vant RFCs and Internet drafts.

• TCP-Friendly Web site: Summarizes some of the recent work on adaptive conges-
tion control algorithms for non-TCP-based applications, with a specific focus on
schemes that share bandwidth fairly with TCP connections.

20.6 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms
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Review Questions

20.1. What addressing elements are needed to specify a target transport service (TS) user?
20.2. Describe four strategies by which a sending TS user can learn the address of a receiv-

ing TS user.
20.3. Explain the use of multiplexing in the context of a transport protocol.
20.4. Briefly describe the credit scheme used by TCP for flow control.
20.5. What is the key difference between the TCP credit scheme and the sliding-window

flow control scheme used by many other protocols, such as HDLC?
20.6. Explain the two-way and three-way handshake mechanisms.
20.7. What is the benefit of the three-way handshake mechanism?
20.8. Define the urgent and push features of TCP.
20.9. What is a TCP implementation policy option?

20.10. How can TCP be used to deal with network or internet congestion?
20.11. What does UDP provide that is not provided by IP?

Problems

20.1 It is common practice in most transport protocols (indeed, most protocols at all
levels) for control and data to be multiplexed over the same logical channel on a
per-user-connection basis. An alternative is to establish a single control transport
connection between each pair of communicating transport entities. This connection
would be used to carry control signals relating to all user transport connections
between the two entities. Discuss the implications of this strategy.

20.2 The discussion of flow control with a reliable network service referred to a backpres-
sure mechanism utilizing a lower-level flow control protocol. Discuss the disadvan-
tages of this strategy.

20.3 Two transport entities communicate across a reliable network. Let the normalized
time to transmit a segment equal 1. Assume that the end-to-end propagation delay is
3, and that it takes a time 2 to deliver data from a received segment to the transport
user. The sender is initially granted a credit of seven segments. The receiver uses a
conservative flow control policy, and updates its credit allocation at every opportu-
nity. What is the maximum achievable throughput?

20.4 Someone posting to comp.protocols.tcp-ip complained about a throughput of 120
kbps on a 256-kbps link with a 128-ms round-trip delay between the United States
and Japan, and a throughput of 33 kbps when the link was routed over a satellite.
a. What is the utilization over the two links? Assume a 500-ms round-trip delay for

the satellite link.
b. What does the window size appear to be for the two cases?
c. How big should the window size be for the satellite link?

20.5 Draw diagrams similar to Figure 20.4 for the following (assume a reliable sequenced
network service):
a. Connection termination: active/passive
b. Connection termination: active/active
c. Connection rejection
d. Connection abortion: User issues an OPEN to a listening user, and then issues a

CLOSE before any data are exchanged.
20.6 With a reliable sequencing network service, are segment sequence numbers strictly

necessary? What, if any, capability is lost without them?
20.7 Consider a connection-oriented network service that suffers a reset. How could this

be dealt with by a transport protocol that assumes that the network service is reliable
except for resets?
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20.8 The discussion of retransmission strategy made reference to three problems associ-
ated with dynamic timer calculation.What modifications to the strategy would help to
alleviate those problems?

20.9 Consider a transport protocol that uses a connection-oriented network service. Sup-
pose that the transport protocol uses a credit allocation flow control scheme, and the
network protocol uses a sliding-window scheme. What relationship, if any, should
there be between the dynamic window of the transport protocol and the fixed win-
dow of the network protocol?

20.10 In a network that has a maximum packet size of 128 bytes, a maximum packet lifetime
of 30 s, and an 8-bit packet sequence number, what is the maximum data rate per con-
nection?

20.11 Is a deadlock possible using only a two-way handshake instead of a three-way hand-
shake? Give an example or prove otherwise.

20.12 Listed are four strategies that can be used to provide a transport user with the address
of the destination transport user. For each one, describe an analogy with the Postal
Service user.
a. Know the address ahead of time.
b. Make use of a “well-known address.”
c. Use a name server.
d. Addressee is spawned at request time.

20.13 In a credit flow control scheme such as that of TCP, what provision could be made for
credit allocations that are lost or misordered in transit?

20.14 What happens in Figure 20.3 if a SYN comes in while the requested user is in
CLOSED? Is there any way to get the attention of the user when it is not listening?

20.15 In discussing connection termination with reference to Figure 20.8, it was stated that
in addition to receiving an acknowledgement of its FIN and sending an acknowledge-
ment of the incoming FIN, a TCP entity must wait an interval equal to twice the max-
imum expected segment lifetime (the TIME WAIT state). Receiving an ACK to its
FIN assures that all of the segments it sent have been received by the other side.
Sending an ACK to the other side’s FIN assures the other side that all its segments
have been received. Give a reason why it is still necessary to wait before closing the
connection.

20.16 Ordinarily, the Window field in the TCP header gives a credit allocation in octets.
When the Window Scale option is in use, the value in the Window field is multiplied
by a where F is the value of the window scale option. The maximum value of F
that TCP accepts is 14. Why is the option limited to 14?

20.17 Suppose the round-trip time (RTT) between two hosts is 100 ms, and that both hosts
use a TCP window of 32 Kbytes. What is the maximum throughput that can be
achieved by means of TCP in this scenario?

20.18 Suppose two hosts are connected with each other by a means of a 100 mbps link, and
assume the round-trip time (RTT) between them is 1 ms. What is the minimum TCP
window size that would let TCP achieve the maximum possible throughput between
these two hosts? (Note: Assume no overhead.)

20.19 A host is receiving data from a remote peer by means of TCP segments with a pay-
load of 1460 bytes. If TCP acknowledges every other segment, what is the minimum
uplink bandwidth needed to achieve a data throughput of 1 MBytes per second,
assuming there is no overhead below the network layer? (Note: Assume no options
are used by TCP and IP.)

20.20 Analyze the advantages and disadvantages of performing congestion control at the
transport layer, rather than at the network layer.

20.21 Jacobson’s congestion control algorithm assumes most packet losses are caused by
routers dropping packets due to network congestion. However, packets may be also
dropped if they are corrupted in their path to destination. Analyze the performance
of TCP in a such lossy environment, due to Jacobson’s congestion control algorithm.

2F,
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20.22 One difficulty with the original TCP SRTT estimator is the choice of an initial value.
In the absence of any special knowledge of network conditions, the typical approach
is to pick an arbitrary value, such as 3 seconds, and hope that this will converge quickly
to an accurate value. If this estimate is too small, TCP will perform unnecessary
retransmissions. If it is too large,TCP will wait a long time before retransmitting if the
first segment is lost. Also, the convergence may be slow, as this problem indicates.
a. Choose and and assume all measured RTT

and no packet loss. What is SRTT(19)? Hint: Equation (20.3)
can be rewritten to simplify the calculation, using the expression 

b. Now let and assume measured RTT 
and no packet loss. What is SRTT(19)?

20.23 A poor implementation of TCP’s sliding-window scheme can lead to extremely poor
performance. There is a phenomenon known as the Silly Window Syndrome (SWS),
which can easily cause degradation in performance by several factors of 10. As an
example of SWS, consider an application that is engaged in a lengthy file transfer, and
that TCP is transferring this file in 200-octet segments.The receiver initially provides a
credit of 1000.The sender uses up this window with 5 segments of 200 octets. Now sup-
pose that the receiver returns an acknowledgment to each segment and provides an
additional credit of 200 octets for every received segment. From the receiver’s point of
view, this opens the window back up to 1000 octets. However, from the sender’s point
of view, if the first acknowledgment arrives after five segments have been sent, a win-
dow of only 200 octets becomes available. Assume that at some point, the sender cal-
culates a window of 200 octets but has only 50 octets to send until it reaches a “push”
point. It therefore sends 50 octets in one segment, followed by 150 octets in the next
segment, and then resumes transmission of 200-octet segments. What might now hap-
pen to cause a performance problem? State the SWS in more general terms.

20.24 TCP mandates that both the receiver and the sender should incorporate mechanisms
to cope with SWS.
a. Suggest a strategy for the receiver. Hint: Let the receiver “lie” about how much

buffer space is available under certain circumstances. State a reasonable rule of
thumb for this.

b. Suggest a strategy for the sender. Hint: Consider the relationship between the
maximum possible send window and what is currently available to send.

20.25 Derive Equation (20.2) from Equation (20.1).
20.26 In Equation (20.5), rewrite the definition of so that it is a function of

Interpret the result.
20.27 A TCP entity opens a connection and uses slow start. Approximately how many

round-trip times are required before TCP can send N segments.
20.28 Although slow start with congestion avoidance is an effective technique for coping

with congestion, it can result in long recovery times in high-speed networks, as this
problem demonstrates.
a. Assume a round-trip time of 60 ms (about what might occur across a continent)

and a link with an available bandwidth of 1 Gbps and a segment size of 576 octets.
Determine the window size needed to keep the pipe full and the time it will take
to reach that window size after a timeout using Jacobson’s approach.

b. Repeat (a) for a segment size of 16 Kbytes.

SERR1K + 12. SRTT1K + 12

values = 3 secondsSRTT102 = 1 second
11 - an2/11 - a2.values = 1 second

SRTT102 = 3 seconds,a = 0.85


