
Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

59

Stacks and Recursion

8 Stacks and Recursion

8.1 Introduction

Before moving on from discussing dispensers to discussing collections, we must discuss the strong

connection between stacks and recursion. Recall that recursion involves operations that call themselves.

Recursive operation: An operation that either calls itself directly, or calls other operations

that call it.

Recursion and stacks are intimately related in the following ways:

•	 Every recursive operation (or group of mutually recursive operations) can be rewritten

without recursion using a stack.

•	 Every algorithm that uses a stack can be rewritten without a stack using one or more

recursive operations.

To establish the irst point, note that computers do not support recursion at the machine level —most

processors can move data around, do a few simple arithmetic and logical operations, and compare values

and branch to diferent points in a program based on the result, but that is all. Yet many programming

language support recursion. How is this possible? At runtime, compiled programs use a stack that stores

data about the current state of execution of a sub-program, called an activation record. When a sub-

program is called, a new activation record is pushed on the stack to hold the sub-program’s arguments,

local variables, return address, and other book-keeping information. he activation record stays on the

stack until the sub-program returns, when it is popped of the stack. Because every call of a sub-program

causes a new activation record to be pushed on the stack, this mechanism supports recursion: every

recursive call of a sub-program has its own activation record, so the data associated with a particular

sub-program call is not confused with that of other calls of the sub-program. hus the recursive calls

can be “unwound” onto the stack, and a non-recursive machine can implement recursion.

he second point is not quite so easy to establish, but the argument goes like this: when an algorithm

would push data on a stack, a recursive operation can preserve the data that would go on the stack in

local variables and then call itself to continue processing. he recursive call returns just when it is time

to pop the data of the stack, so processing can continue with the data in the local variables just as it

would if the data had been popped of the stack.

In some sense, then, recursion and stacks are equivalent. It turns out that some algorithms are easier to

write with recursion, some are easier to write with stacks, and some are just as easy (or hard) one way

as the other. But in any case, there is always a way to write algorithms either entirely recursively without

any stacks, or without any recursion using stacks.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

60

Stacks and Recursion

In the remainder of this chapter we will illustrate the theme of the equivalence of stacks and recursion

by considering a few examples of algorithms that need either stacks or recursion, and we will look at

how to implement these algorithms both ways.

8.2 Balanced Brackets

Because of its simplicity, we begin with an example that doesn’t really need a stack or recursion to solve,

but illustrates how both can be used with equal facility: determining whether a string of brackets is

balanced or not. he strings of balanced brackets are deined as follows:

1. he empty string and the string “[]” are both strings of balanced brackets.

2. If A is a string of balanced brackets, then so it “[”A “]”.

3. If A and B are strings of balanced brackets, then so is AB.

So, for example, [[[][]][]] is a string of balanced brackets, but [[[]][]][]] is not.

he recursive algorithm in Figure 1, written in Ruby, checks whether a string of brackets is balanced.

ENGINEERS, UNIVERSITY
GRADUATES & SALES
PROFESSIONALS
Junior and experienced F/M

Total will hire 10,000 people in 2014.

Why not you?

Are you looking for work in
process, electrical or other types of
engineering, R&D, sales & marketing
or support professions such as
information technology?

We’re interested in your skills.

Join an international leader in the
oil, gas and chemical industry by
applying at

www.careers.total.com
More than 700 job

openings are now online!

Potential
for development

C
o
p

y
ri
g
h
t
:
To

ta
l/
C

o
rb

is

for development

Potential
for exploration

http://bookboon.com/
http://bookboon.com/count/advert/f512d1dd-ebe8-4036-b221-a2f500bd9ae3

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

61

Stacks and Recursion

def recursive_balanced?(string)

 return true if string.empty?

 source = StringEnumerator.new(string)

 check_balanced?(source) && source.empty?

end

def check_balanced?(source)

 return false unless source.current == '['

 loop do

 if source.next == '['

 return false if !check_balanced?(source)

 end

 return false unless source.current == ']'

 break if source.next != '['

 end

 true

end

Figure 1: Recursive Algorithm For Checking String of Balanced Brackets

he recursive_balanced?() operation has a string argument containing only brackets. It does

some initial and inal processing, but most of the work is done by the recursive helper function check_

balanced?(). Note that a StringEnumerator is created from the string argument and passed to

the check_balanced?() operation. We will discuss enumerators later, but for now it suices to say

that a StringEnumerator is a class that provides characters from a string one by one when asked

for them. It also indicates when all the characters have been provided, signalling the end of the string.

he algorithm is based on the recursive deinition of balanced brackets. If the string is empty, then it is a

string of balanced brackets. his is checked right away by recursive_balanced?(). If the string is

not empty, then check_balanced?() is called to check the string. It irst checks the current character

to see whether it is a let bracket, and returns false if it is not. It then considers the next character. If it is

another let bracket, then there is a nested string of balanced brackets, which is checked by a recursive call.

In any case, a check is then made for the right bracket matching the initial let bracket, which takes care

of the other basis case in the recursive deinition. he loop is present to handle the case of a sequence of

balanced brackets, as allowed by the recursive deinition. Finally, when check_balanced?() returns

its result to recursive_balanced?(), the latter checks to make sure that the string has all been

consumed, which guarantees that there are no stray brackets at the end of the string.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

62

Stacks and Recursion

his same job could be done just as well with a non-recursive algorithm using a stack. In the code in

Figure 2 below, again written in Ruby, a stack is used to hold let brackets as they are encountered. If a

right bracket is found for every let bracket on the stack, then the string of brackets is balanced. Note

that the stack must be checked to make sure it is not empty as we go along (which would mean too

many right brackets), and that it is empty when the entire string is processed (which would mean too

many let brackets).

def stack_balanced?(string)

 stack = LinkedStack.new

 string.chars do | ch |

 case

 when ch == '['

 stack.push(ch)

 when ch == ']'

 return false if stack.empty?

 stack.pop

 else

 return false

 end

 end

 stack.empty?

end

Figure 2: Non-Recursive Algorithm For Checking Strings of Balanced Brackets

In this case the recursive algorithm is about as complicated as the stack-based algorithm. In the examples

below, we will see that sometimes the recursive algorithm is simpler, and sometimes the stack-based

algorithm is simpler, depending on the problem.

8.3 Inix, Preix, and Postix Expressions

he arithmetic expressions we learned in grade school are inix expressions, but other kinds of expressions,

called preix or postix expressions, might also be used.

Inix expression: An expression in which the operators appear between their operands.

Preix expression: An expression in which the operators appear before their operands.

Postix expression: An expression in which the operators appear ater their operands.

In a preix expression, the operands of an operator appear immediately to its right, while in a postix

expression, they appear immediately to its let. For example, the inix expression (4 + 5) * 9 can be

rewritten in preix form as * + 4 5 9 and in postix form as 4 5 + 9 *. An advantage of pre- and postix

expressions over inix expressions is that the latter don’t need parentheses.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

63

Stacks and Recursion

Many students are confused by preix and postix expressions the irst time they encounter them, so lets

consider a few more examples. In the expressions in the table below, all numbers are one digit long and

the operators are all binary. All the expressions on a row are equivalent.

Inix Preix Postix

(2 + 8) * (7 % 3) * + 2 8 % 7 3 2 8 + 7 3 % *

((2 * 3) + 5) % 4 % + * 2 3 5 4 2 3 * 5 + 4 %

((2 * 5) % (6 / 4)) + (2 * 3) + % * 2 5 / 6 4 * 2 3 2 5 * 6 4 / % 2 3 * +

1 + (2 + (3 + 4)) + 1 + 2 + 3 4 1 2 3 4 + + +

((1 + 2) + 3) + 4 + + + 1 2 3 4 1 2 + 3 + 4 +

Note that all the expressions have the digits in the same order. his is necessary because order matters for

the subtraction and division operators. Also notice that the order of the operators in a preix expression

is not necessarily the reverse of its order in a postix expression; sometimes operators are in the opposite

order in these expressions, but not always. he systematic relationship between the operators is that the

main operator always appears within the fewest number of parentheses in the inix expression, is irst

in the preix expression, and is last in the postix expression. Finally, in every expression, the number of

constant arguments (digits) is always one more than the number of operators.

www.sylvania.com

We do not reinvent

the wheel we reinvent

light.
Fascinating lighting offers an ininite spectrum of

possibilities: Innovative technologies and new

markets provide both opportunities and challenges.

An environment in which your expertise is in high

demand. Enjoy the supportive working atmosphere

within our global group and beneit from international

career paths. Implement sustainable ideas in close

cooperation with other specialists and contribute to

inluencing our future. Come and join us in reinventing

light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

64

Stacks and Recursion

Let’s consider the problem of evaluating preix and postix expressions. It turns out that sometimes it is

much easier to write a recursive evaluation algorithm, and sometimes it is much easier to write a stack-

based algorithm. In particular,

•	 It is very easy to write a recursive preix expression evaluation algorithm, but somewhat

harder to write this algorithm with a stack.

•	 It is very easy to write a stack-based postix expression evaluation algorithm, but very hard

to write this algorithm recursively.

To establish these claims, we will consider a few of the algorithms. An algorithm in Ruby to evaluate preix

expressions recursively appears in Figure 3 below. he main operation recursive_eval_preix()

accepts a string as an argument. Its job is to create a StringEnumeration object to pass along to

the recursive helper function, and to make sure that the string has all been read (if not, then there are

extra characters at the end of the expression). he real work is done by the eval_preix() operation,

which is recursive.

It helps to consider the recursive deinition of a preix expression to understand this algorithm:

A preix expression is either a digit, or if A and B are preix expressions and op is an operator,

then an expression of the form op A B.

he eval_preix() operation irst checks to see whether the string is exhausted and throws an

exception if it is (because the empty string is not a preix expression). Otherwise, it fetches the current

character and advances to the next character to prepare for later processing. If the current character is a

digit, this is the basis case of the recursive deinition of a preix expression, so it simply returns the integer

value of the digit. Otherwise, the current character is an operator. According to the recursive deinition,

the operator should be followed by two preix expressions, so the algorithm applies this operator to the

result of recursively evaluating the following let and right arguments. If these arguments are not there,

or are ill-formed, then one of these recursive calls will throw an exception that is propagated to the caller.

he evaluate() operation is a helper function that simply applies the operation indicated in its op

argument to its left_arg and right_arg values.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

65

Stacks and Recursion

def recursive_eval_preix(string)
 source = StringEnumerator.new(string)

 result = eval_preix(source)
 raise "Too many arguments" unless source.empty?

 result

end

def eval_preix(source)
 raise "Missing argument" if source.empty?

 ch = source.current

 source.next

 if ch =~ /\d/

 return ch.to_i

 else

 left_arg = eval_preix(source)
 right_arg = eval_preix(source)
 return evaluate(ch,left_arg, right_arg)

 end

end

Figure 3: Recursive Algorithm to Evaluate Preix Expressions

EADS unites a leading aircraft manufacturer, the world’s largest

helicopter supplier, a global leader in space programmes and a

worldwide leader in global security solutions and systems to form

Europe’s largest defence and aerospace group. More than

140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,

in 90 locations globally, to deliver some of the industry’s most

exciting projects.

An EADS internship offers the chance to use your theoretical

knowledge and apply it first-hand to real situations and assignments

during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,

you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across

disciplines ranging from engineering, IT, procurement and

finance, to strategy, customer support, marketing and sales.

Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also

find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

66

Stacks and Recursion

his recursive algorithm is extremely simple, yet is does a potentially very complicated job. In contrast,

algorithms to evaluate preix expressions using a stack are quite a bit more complicated. One such an

algorithm is shown below in Figure 4. his algorithm has two stacks: one for (integer) let arguments,

and one for (character) operators.

def stack_eval_preix(string)
 raise "Bad characters" if string =~ INVALID_CHARACTERS

 raise "Missing expression" if string == nil || string.empty?

 op_stack = LinkedStack.new

 val_stack = LinkedStack.new

 string.chars do | ch |

 case

 when ch =~ OPERATORS

 op_stack.push(ch)

 when ch =~ /\d/

 right_arg = ch.to_i

 loop do

 break if op_stack.empty? || op_stack.top != 'v'

 op_stack.pop

 raise "Missing operator" if op_stack.empty?

 right_arg = evaluate(op_stack.pop,val_stack.pop,right_arg)

 end

 op_stack.push('v')

 val_stack.push(right_arg)

 end

 end

 raise "Missing argument" if op_stack.empty?

 op_stack.pop

 raise "Missing expression" if val_stack.empty?

 result = val_stack.pop

 raise "Too many arguments" unless val_stack.empty?

 raise "Missing argument" unless op_stack.empty?

 result

end

Figure 4: Stack-Based Algorithm to Evaluate Preix Expressions

he strategy of this algorithm is to process each character from the string in turn, pushing operators on

the operator stack as they are encountered and values on the value stack as necessary to preserve let

arguments. he placement of values relative to arguments is noted in the operator stack with a special v

marker. An operator is applied as soon as two arguments are available. Results are pushed on the value

stack and marked in the operator stack. Once the string is exhausted, the value stack should hold a

single (result) value and the operator stack should hold a single v marker—if not, then there are either

too many or too few arguments.

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

67

Stacks and Recursion

Clearly, this stack-based evaluation algorithm is more complicated than the recursive evaluation

algorithm. In contrast, a stack-based evaluation algorithm for postix expressions is quite simple, while

a recursive algorithm is quite complicated. To illustrate, consider the stack-based postix expression

evaluation algorithm in Figure 5 below.

def stack_eval_postix(string)
 stack = LinkedStack.new

 string.chars do | ch |

 case

 when ch =~ /\d/

 stack.push(ch.to_i)

 when ch =~ /[+\-*\/%]/

 raise "Missing argument" if stack.empty?

 right_arg = stack.pop

 raise "Missing argument" if stack.empty?

 left_arg = stack.pop

 stack.push(evaluate(ch, left_arg, right_arg))

 end

 end

 raise "Missing expresion" if stack.empty?

 raise "Too many arguments" unless stack.size == 1

 stack.pop

end

Figure 5: Stack-Based Algorithm to Evaluate Postix Expressions

he strategy of this algorithm is quite simple: there is a single stack that holds arguments, and values

are pushed on the stack whenever they are encountered in the input string. Whenever an operator is

encountered, the top two values are popped of the stack, the operator is applied to them, and the result

is pushed back on the stack. his continues until the string is exhausted, at which point the inal value

should be on the stack. If the stack becomes empty along the way, or there is more than one value on

the stack when the input string is exhausted, then the input expression is not well-formed.

he recursive algorithm for evaluating postix expressions is quite complicated. he strategy is to

remember arguments in local variables, making recursive calls as necessary until an operator is

encountered. We leave this algorithm as a challenging exercise.

he lesson of all these examples is that although it is always possible to write an algorithm using either

recursion or stacks, in some cases a recursive algorithm is easier to develop, and in other cases a stack-

based algorithm is easier. Each problem should be explored by sketching out both sorts of algorithms,

and then choosing the one that appears easiest for detailed development.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Concise Notes on Data Structures and Algorithms

68

Stacks and Recursion

8.4 Tail Recursive Algorithms

We have claimed that every recursive algorithms can be replaced with a non-recursive algorithm using

a stack. his is true, but it overstates the case: sometimes a recursive algorithm can be replaced with

a non-recursive algorithm that does not even need to use a stack. If a recursive algorithm is such that

at most one recursive call is made as the inal step in each execution of the algorithm’s body, then the

recursion can be replaced with a loop. No stack is needed because data for additional recursive calls is

not needed—there are no additional recursive calls. A simple example is a recursive algorithm to search

an array for a key, like the one in Figure 6.

def recursive_search(a, key)

 return false if a.size == 0

 return true if a[0] == key

 return recursive_search(a[1̤-1],key)
end

Figure 6: A Recursive Factorial Algorithm

he recursion in this algorithm can be replaced with a simple loop as shown in Figure 7.

360°
thinking.

© Deloitte & Touche LLP and affiliated entities.Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

69

Stacks and Recursion

def search(a, key)

 a.each { | v | return true if v == key }

 return false

end

Figure 7: A Non-Recursive Factorial Algorithm

Algorithms that only call themselves at most once as the inal step in every execution of their bodies,

like the array search algorithm, are called tail-recursive.

Tail recursive algorithm: A recursive algorithm that calls itself at most once as the last step

in every execution of its body.

Recursion can always be removed from tail-recursive algorithms without using a stack.

8.5 Summary and Conclusion

Algorithms that use recursion can always be replaced by algorithms that use a stack, and vice versa, so

stacks and recursion are in some sense equivalent. However, some algorithms are much easier to write

using recursion, while others are easier to write using a stack. Which is which depends on the problem.

Programmers should evaluate both alternatives when deciding how to solve individual problems.

8.6 Review Questions

1. Which of the algorithms for determining whether a string of brackets is balanced is easiest

to for you to understand?

2. What characteristics do preix, postix, and inix expressions share?

3. Which is easier: evaluating a preix expression with a stack or using recursion?

4. Which is easier: evaluating a postix expression with a stack or using recursion?

5. Is the recursive algorithm to determine whether a string of brackets is balanced tail

recursive? Explain why or why not.

8.7 Exercises

1. We can slightly change the deinition of strings of balanced brackets to exclude the empty

string. Restate the recursive deinition and modify the algorithms to check strings of

brackets to see whether they are balanced to incorporate this change.

2. Fill in the following table with equivalent expressions in each row.

Inix Preix Postix

(((2 * 3) - 4) * (8 / 3)) + 2

% + 8 * 2 6 - 8 4

8 2 - 3 * 4 5 + 8 % /

http://bookboon.com/

Download free eBooks at bookboon.com

Concise Notes on Data Structures and Algorithms

70

Stacks and Recursion

3. Write a recursive algorithm to evaluate postix expressions as discussed in this chapter.

3. Write a recursive algorithm to evaluate inix expressions. Assume that operators have equal

precedence and are let-associative so that, without parentheses, operations are evaluated

from let to right. Parentheses alter the order of evaluation in the usual way.

4. Write a stack-based algorithm to evaluate inix expressions as deined in the last exercise.

5. Which of the algorithms for evaluating inix expressions is easier to develop?

6. Write a non-recursive algorithm that does not use a stack to determine whether a string of

brackets is balanced. Hint: count brackets.

8.8 Review Question Answers

1. his answer depends on the individual, but most people probably ind the stack-based

algorithm a bit easier to understand because its strategy is so simple.

2. Preix, postix, and inix expressions list their arguments in the same order. he number

of operators in each is always one less than the number of constant arguments. he main

operator in each expression and sub-expression is easy to ind: the main operator in an

inix expression is the let-most operator inside the fewest number of parentheses; the main

operator of a preix expression is the irst operator; the main operator of a postix expression

is the last operator.

3. Evaluating a preix expression recursively is much easier than evaluating it with a stack.

4. Evaluating a postix expression with a stack is much easier than evaluating it recursively.

5. he recursive algorithm to determine whether a string of brackets is balanced calls itself

at most once on each activation, but the recursive call is not the last step in the execution

of the body of the algorithm—there must be a check for the closing right bracket ater

the recursive call. Hence this operation is not tail recursive and it cannot be implemented

without a stack. (here is a non-recursive algorithm to check for balanced brackets without

using a stack, but it uses a completely diferent approach from the recursive algorithms—see

exercise 7).

http://bookboon.com/

