
19

Chapter 2

Creating a Basic Game World

The arrival of smartphones and handheld devices that support gaming has created a renewed interest in simple
puzzle and physics-based games that can be played for short periods of time. Most of these games have a simple
concept, small levels, and are easy to learn. One of the most popular and famous games in this genre is Angry Birds
(by Rovio Entertainment), a puzzle/strategy game where players use a slingshot to shoot birds at enemy pigs. Despite
a fairly simple premise, the game has been downloaded and installed on over 1 billion devices around the world.
The game uses a physics engine to realistically model the slinging, collisions, and breaking of objects inside its game
world.

Over the next three chapters, we are going to build our own physics-based puzzle game with complete playable
levels. Our game, Froot Wars, will have fruits as protagonists, junk food as the enemy, and some breakable structures
within the level.

We will be implementing all the essential components you will need in your own games—splash screens, loading
screens and preloaders, menu screens, parallax scrolling, sound, realistic physics with the Box2D physics engine, and
a scoreboard. Once you have this basic framework, you should be able to reuse these ideas in your own puzzle games.

So let’s get started.

Basic HTML Layout
The first thing we need to do is to create the basic game layout. This will consist of several layers:

•	 Splash screen: Shown when the game page is loaded

•	 Game start screen: A menu that allows the player to start the game or modify settings

•	 Loading/progress screen: Shown whenever the game is loading assets (such as images and
sound files)

•	 Game canvas: The actual game layer

•	 Scoreboard: An overlay above the game canvas to show a few buttons and the score

•	 Ending screen: A screen displayed at the end of each level

Each of these layers will be either a div element or a canvas element that we will display or hide as needed. We
will be using jQuery (http://jquery.com/) to help us with some of these manipulation tasks. The code will be laid
out with separate folders for images and JavaScript code.

http://jquery.com/

Chapter 2 ■ Creating a Basic Game World

20

Creating the Splash Screen and Main Menu
We start with a skeleton HTML file, similar to the first chapter, and add the markup for our containers, as shown in
Listing 2-1.

Listing 2-1.  Basic Skeleton (index.html) with the Layers Added

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title > Froot Wars</title>
 <script src="js/jquery.min.js" type="text/javascript" charset="utf-8"></script>
 <script src="js/game.js" type="text/javascript" charset="utf-8"></script>
 <link rel="stylesheet" href="styles.css" type="text/css" media="screen" charset="utf-8">
 </head>

 <body>
 <div id="gamecontainer">
 <canvas id="gamecanvas" width="640" height="480" class="gamelayer">
 </canvas>

 <div id="scorescreen" class="gamelayer">

  Score: 0
 </div>

 <div id="gamestartscreen" class="gamelayer">

 </div>

 <div id="levelselectscreen" class="gamelayer">
 </div>

 <div id="loadingscreen" class="gamelayer">
 <div id="loadingmessage"></div>
 </div>

 <div id="endingscreen" class="gamelayer">
 <div>
 <p id="endingmessage" > The Level Is Over Message</p>
 <p id="playcurrentlevel"> Replay Current
Level</p>
 <p id="playnextlevel"> Play Next Level </p>
 <p id="showLevelScreen"> Return to Level
Screen</p>
 </div>
 </div>

Chapter 2 ■ Creating a Basic Game World

21

 </div>
 </body>
</html>

As you can see, we defined a main gamecontainer div element that contains each of the game layers:
gamestartscreen, levelselectscreen, loadingscreen, scorescreen, endingscreen, and finally gamecanvas.

In addition, we will also add CSS styles for these layers in an external file called styles.css. We will start by
adding styles for the game container and the starting menu screen, as shown in Listing 2-2.

Listing 2-2.  CSS Styles for the Container and Start Screen (styles.css)

#gamecontainer {
 width:640px;
 height:480px;
 background: url(images/splashscreen.png);
 border: 1px solid black;
}

.gamelayer {
 width:640px;
 height:480px;
 position:absolute;
 display:none;
}

/* Game Starting Menu Screen */
#gamestartscreen {
 padding-top:250px;
 text-align:center;
}

#gamestartscreen img {
 margin:10px;
 cursor:pointer;
}

We have done the following in this CSS style sheet so far:

Define our game container and all game layers with a size of 640px by 480px.•	

Make sure all game layers are positioned using absolute positioning (they are placed on top of •	
each other) so that we can show/hide and superimpose layers as needed. Each of these layers
is hidden by default.

Set our game splash screen image as the main container background so it is the first thing a •	
player sees when the page loads.

Add some styling for our game start screen (the starting menu), which has options such as •	
starting a new game and changing game settings.

Note■■  A ll the images and source code are available in the Source Code/Download area of the Apress web site
(www.apress.com). If you would like to follow along, you can copy all the asset files into a fresh folder and build the game
on your own.

4

http://www.apress.com

Chapter 2 ■ Creating a Basic Game World

22

We need to add some JavaScript code to start showing the main menu, the loading screen, and the game. To
keep our code clean and easy to maintain, we will keep all our game-related JavaScript code in a separate file
(js/game.js).

We start by defining a game object that will contain most of our game code. The first thing we need is an init()
function that will be called after the browser loads the HTML document.

Listing 2-3.  A Basic game Object (js/game.js)

var game = {
 // Start initializing objects, preloading assets and display start screen
 init: function(){

 // Hide all game layers and display the start screen
 $('.gamelayer').hide();
 $('#gamestartscreen').show();

 //Get handler for game canvas and context
 game.canvas = $('#gamecanvas')[0];
 game.context = game.canvas.getContext('2d');
 },
}

The code in Listing 2-3 defines a JavaScript object called game with an init() function. For now, this init()
function just hides all game layers and shows the game start screen using the jQuery hide() and show() functions. It
also saves pointers to the game canvas and context so we can refer to them more easily using
game.context and game.canvas.

Figure 2-1.  The game splash screen

If we open in a browser the HTML file we have created so far, we see the game splash screen surrounded by a
black border, as shown in Figure 2-1.

Chapter 2 ■ Creating a Basic Game World

23

Trying to manipulate image and div elements before confirming that the page has loaded completely will result
in unpredictable behavior (including JavaScript errors). We can safely call this game.init() method after the window
has loaded by adding a small snippet of JavaScript code at the top of game.js (shown in Listing 2-4).

Listing 2-4.  Calling game.init() Method Safely Using the load() Event

$(window).load(function() {
 game.init();
});

When we run our HTML code, the browser initially displays the splash screen and then displays the game start
screen on top of the splash screen, as shown in Figure 2-2.

Figure 2-2.  The game start screen and menu options

Level Selection
So far we have waited for the game HTML file to load completely and then show a main menu with two options. When
the user clicks the Play button, ideally we would like to display a level selection screen that shows a list of available
levels.

Before we can do this, we need to create an object for handling levels. This object will contain both the level data
and some simple functions for handling level initialization. We will create this levels object inside game.js and place
it after the game object, as shown in Listing 2-5.

Listing 2-5.  Simple levels Object with Level Data and Functions

var levels = {
 // Level data
 data:[
 { // First level
 foreground:'desert-foreground',

Chapter 2 ■ Creating a Basic Game World

24

 background:'clouds-background',
 entities:[]
 },
 { // Second level
 foreground:'desert-foreground',
 background:'clouds-background',
 entities:[]
 }
],
 // Initialize level selection screen
 init:function(){
 var html = "";
 for (var i = 0; i < levels.data.length; i++) {
 var level = levels.data[i];
 html + = ' < input type = "button" value = "' + (i + 1) + '" > ';
 };
 $('#levelselectscreen').html(html);

 // Set the button click event handlers to load level
 $('#levelselectscreen input').click(function(){
 levels.load(this.value-1);
 $('#levelselectscreen').hide();
 });
 },

 // Load all data and images for a specific level
 load:function(number){
 }
}

The levels object has a data array that contains information about each of the levels. For now, the only level
information we store is a background and foreground image. However, we will be adding information about the hero
characters, the villains, and the destructible entities within each level. This will allow us to add new levels very quickly
by just adding new items to the array.

The next thing the levels object contains is an init() function that goes through the level data and dynamically
generates buttons for each of the levels. The level button click event handlers are set to call the load() method for
each level and then hide the level selection screen.

We will call levels.init() from inside the game.init() method to generate the level selection screen buttons.
The game.init() method now looks as shown in Listing 2-6.

Listing 2-6.  Initializing Levels from game.init()

init: function(){
 // Initialize objects
 levels.init();

 // Hide all game layers and display the start screen
 $('.gamelayer').hide();
 $('#gamestartscreen').show();

Chapter 2 ■ Creating a Basic Game World

25

 //Get handler for game canvas and context
 game.canvas = $('#gamecanvas')[0];
 game.context = game.canvas.getContext('2d');
},

We also need to add some CSS styling for the buttons inside styles.css, as shown in Listing 2-7.

Listing 2-7.  CSS Styles for the Level Selection Screen

/* Level Selection Screen */
#levelselectscreen {
 padding-top:150px;
 padding-left:50px;
}

#levelselectscreen input {
 margin:20px;
 cursor:pointer;
 background:url(images/icons/level.png) no-repeat;
 color:yellow;
 font-size: 20px;
 width:64px;
 height:64px;
 border:0;
}

The next thing we need to do is create inside the game object a simple game.showLevelScreen() method that
hides the main menu screen and displays the level selection screen, as shown in Listing 2-8.

Listing 2-8.  showLevelScreen Method Inside the game Object

showLevelScreen:function(){
 $('.gamelayer').hide();
 $('#levelselectscreen').show('slow');
},

This method first hides all the other game layers and then shows the levelselectscreen layer, using a
slow animation.

The last thing we need to do is call the game.showLevelScreen() method when the user clicks the Play button.
We do this by calling the method from the play image’s onclick event:

<img src = "images/icons/play.png" alt = "Play Game"
onclick = "game.showLevelScreen()">

Now, when we start the game and click the Play button, the game detects the number of levels, hides the main
menu, and shows buttons for each of the levels, as shown in Figure 2-3.

Chapter 2 ■ Creating a Basic Game World

26

Right now, we only have a couple of levels showing. However, as we add more levels, the code will automatically
detect the levels and add the right number of buttons (formatted properly, thanks to the CSS). When the user clicks
these buttons, the browser will call the levels.load() button that we have yet to implement.

Loading Images
Before we implement the levels themselves, we need to put in place the image loader and the loading screen. This will
allow us to programmatically load the images for a level and start the game once all the assets have finished loading.

We are going to design a simple loading screen that contains an animated GIF with a progress bar image and some
text above it showing the number of images loaded so far. First, we need to add the CSS in Listing 2-9 to styles.css.

Listing 2-9.  CSS for the Loading Screen

/* Loading Screen */
#loadingscreen {
 background:rgba(100,100,100,0.3);
}

#loadingmessage {
 margin-top:400px;
 text-align:center;
 height:48px;
 color:white;
 background:url(images/loader.gif) no-repeat center;
 font:12px Arial;
}

Figure 2-3.  The level selection screen

Chapter 2 ■ Creating a BasiC game World

27

This CSS adds a dim gray color over the game background to let the user know that the game is currently
processing something and is not ready to receive any user input. It also displays a loading message in white text.

The next step is to create a JavaScript asset loader based on the code from Chapter 1. The loader will do the work
of actually loading the assets and then updating the loadingscreen div.element. We will define a loader object
inside game.js, as shown in Listing 2-10.

Listing 2-10. The Image/Sound Asset Loader

var loader = {
 loaded:true,
 loadedCount:0, // Assets that have been loaded so far
 totalCount:0, // Total number of assets that need to be loaded

 init:function(){
 // check for sound support
 var mp3Support,oggSupport;
 var audio = document.createElement('audio');
 if (audio.canPlayType) {
 // Currently canPlayType() returns: "", "maybe" or "probably"
 mp3Support = "" != audio.canPlayType('audio/mpeg');
 oggSupport = "" != audio.canPlayType('audio/ogg; codecs = "vorbis"');
 } else {
 //The audio tag is not supported
 mp3Support = false;
 oggSupport = false;
 }

 // Check for ogg, then mp3, and finally set soundFileExtn to undefined
 loader.soundFileExtn = oggSupport?".ogg":mp3Support?".mp3":undefined;
 },

 loadImage:function(url){
 this.totalCount++;
 this.loaded = false;
 $('#loadingscreen').show();
 var image = new Image();
 image.src = url;
 image.onload = loader.itemLoaded;
 return image;
 },
 soundFileExtn:".ogg",
 loadSound:function(url){
 this.totalCount++;
 this.loaded = false;
 $('#loadingscreen').show();
 var audio = new Audio();
 audio.src = url + loader.soundFileExtn;
 audio.addEventListener("canplaythrough", loader.itemLoaded, false);
 return audio;
 },
 itemLoaded:function(){
 loader.loadedCount++;

Chapter 2 ■ Creating a Basic Game World

28

 $('#loadingmessage').html('Loaded ' + loader.loadedCount + ' of ' + loader.totalCount);
 if (loader.loadedCount === loader.totalCount){
 // Loader has loaded completely..
 loader.loaded = true;
 // Hide the loading screen
 $('#loadingscreen').hide();
 //and call the loader.onload method if it exists
 if(loader.onload){
 loader.onload();
 loader.onload = undefined;
 }
 }
 }
}

The asset loader in Listing 2-10 has the same elements we discussed in Chapter 1, but it is built in a more
modular way. It has the following components:

An init() method that detects the supported audio file format and saves it.•	

Two methods for loading images and audio files—•	 loadImage() and loadSound(). Both
methods increment the totalCount variable and show the loading screen when invoked.

An •	 itemLoaded() method that is invoked each time an asset finishes loading. This method
updates the loaded count and the loading message. Once all the assets are loaded, the loading
screen is hidden and an optional loader.onload() method is called (if defined). This lets us
assign a callback function to call once the images are loaded.

Note■■   Using a callback method makes it easy for us to wait while the images are loading and start the game once all
the images have loaded.

Before the loader can be used, we need to call the loader.init() method from inside game.init() so that the
loader is initialized when the game is getting initialized. The game.init() method now looks as shown in Listing 2-11.

Listing 2-11.  Initializing the Loader from game.init()

init: function(){
 // Initialize objects
 levels.init();
 loader.init();

 // Hide all game layers and display the start screen
 $('.gamelayer').hide();
 $('#gamestartscreen').show();

 //Get handler for game canvas and context
 game.canvas = $('#gamecanvas')[0];
 game.context = game.canvas.getContext('2d');
},

Chapter 2 ■ Creating a Basic Game World

29

Note■■   You can optionally have different images for each of these screens by setting a different background property
style for each div.

Loading Levels
Now that we have an image loader in place, we can work on getting the levels loaded. For now, let’s start with loading
the game background, foreground, and slingshot images by defining a load() method inside the levels object, as
shown in Listing 2-12.

Listing 2-12.  Basic Skeleton for the load() Method Inside the levels Object

// Load all data and images for a specific level
 load:function(number){

 // declare a new currentLevel object
 game.currentLevel = {number:number,hero:[]};
 game.score=0;
 $('#score').html('Score: ' + game.score);
 var level = levels.data[number];

Figure 2-4.  The loading screen

We will use the loader by calling one of the two load methods—loadImage() or loadSound(). When either of
these load methods is called, the screen will display the loading screen shown in Figure 2-4 until all the images and
sounds are loaded.

Chapter 2 ■ Creating a Basic Game World

30

 //load the background, foreground, and slingshot images
 game.currentLevel.backgroundImage = loader.loadImage("images/backgrounds/" + level.background + 
".png");
 game.currentLevel.foregroundImage = loader.loadImage("images/backgrounds/" + level.foreground + 
".png");
 game.slingshotImage = loader.loadImage("images/slingshot.png");
 game.slingshotFrontImage = loader.loadImage("images/slingshot-front.png");

 //Call game.start() once the assets have loaded
 if(loader.loaded){
 game.start()
 } else {
 loader.onload = game.start;
 }
 }

The load() function creates a currentLevel object to store the loaded level data. So far we have only loaded three
images. We will eventually use this method to load the heroes, villains, and blocks needed to build the game.

One last thing to note is that we call the game.start() method once the images are loaded by either calling it
immediately or setting an onload callback. This start() method is where the actual game will be drawn.

Animating the Game
As discussed in Chapter 1, to animate our game, we will call our drawing and animation code multiple times a second
using requestAnimationFrame. Before we can use requestAnimationFrame, we need to place the requestAnimation
polyfill function from Chapter 1 at the top of game.js so that we can use it from our game code, as shown in Listing 2-13.

Listing 2-13.  The requestAnimationFrame Polyfill

// Set up requestAnimationFrame and cancelAnimationFrame for use in the game code
(function() {
 var lastTime = 0;
 var vendors = ['ms', 'moz', 'webkit', 'o'];
 for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) {
 window.requestAnimationFrame = window[vendors[x] + 'RequestAnimationFrame'];
 window.cancelAnimationFrame =
 window[vendors[x] + 'CancelAnimationFrame'] ||
window[vendors[x] + 'CancelRequestAnimationFrame'];
 }

 if (!window.requestAnimationFrame)
 window.requestAnimationFrame = function(callback, element) {
 var currTime = new Date().getTime();
 var timeToCall = Math.max(0, 16 - (currTime - lastTime));
 var id = window.setTimeout(function() { callback(currTime + timeToCall); },
 timeToCall);
 lastTime = currTime + timeToCall;
 return id;
 };

Chapter 2 ■ Creating a Basic Game World

31

 if (!window.cancelAnimationFrame)
 window.cancelAnimationFrame = function(id) {
 clearTimeout(id);
 };
}());

We next use the game.start() method to set up the animation loop, and then we draw the level inside the
game.animate() method. The code is shown in Listing 2-14.

Listing 2-14.  The start() and animate() Functions Inside the game Object

// Game mode
mode:"intro",
// X & Y Coordinates of the slingshot
slingshotX:140,
slingshotY:280,
start:function(){
 $('.gamelayer').hide();
 // Display the game canvas and score
 $('#gamecanvas').show();
 $('#scorescreen').show();

 game.mode = "intro";
 game.offsetLeft = 0;
 game.ended = false;
 game.animationFrame = window.requestAnimationFrame(game.animate,game.canvas);
},
handlePanning:function(){
 game.offsetLeft++; // Temporary placeholder – keep panning to the right
},
animate:function(){
 // Animate the background
 game.handlePanning();

 // Animate the characters

 // Draw the background with parallax scrolling

game.context.drawImage(game.currentLevel.backgroundImage,game.offsetLeft/4,0,640,480,0,0,640,480);

game.context.drawImage(game.currentLevel.foregroundImage,game.offsetLeft,0,640,480,0,0,640,480);

 // Draw the slingshot
 game.context.drawImage(game.slingshotImage,game.slingshotX-game.offsetLeft,game.slingshotY);

 game.context.drawImage(game.slingshotFrontImage,game.slingshotX-game.offsetLeft,game.
slingshotY);

 if (!game.ended){
 game.animationFrame = window.requestAnimationFrame(game.animate,game.canvas);
 }
}

Chapter 2 ■ Creating a Basic Game World

32

Again, the preceding code consists of two methods, game.start() and game.animate(). The start() method
does the following:

Initializes a few variables that we need in the game—•	 offsetLeft and mode. offsetLeft will
be used for panning the game view around the entire level, and mode will be used to store the
current state of the game (intro, wait for firing, firing, fired).

Hides all other layers and displays the canvas layer and the score layer that is a narrow bar on •	
the top of the screen that contains.

Sets the game animation interval to call the •	 animate() function by using
window.requestAnimationFrame.

The bigger method, animate(), will do all the animation and drawing within our game. The method starts with
temporary placeholders for animating the background and characters. We will be implementing these later. We then
draw the background and foreground image using the offsetLeft variable to offset the x axis of the images. Finally,
we check if the game.ended flag has been set and, if not, use requestAnimationFrame to call animate() again. We can
use the game.ended flag later to decide when to stop the animation loop.

One thing to note is that the background image and foreground image are moved at different speeds relative to
the scroll left: the background image is moved only one-fourth of the distance that the foreground image is moved.
This difference in movement speed of the two layers will give us the illusion that the clouds are further away once we
start panning around the level.

Finally, we draw the slingshot in the foreground.

Note■■  P arallax scrolling is a technique used to create an illusion of depth by moving background images slower than
foreground images. This technique exploits the fact that objects at a distance always appear to move slower than objects
that are close by.

Before we can try out the code, we need to add a little more CSS styling inside styles.css to implement our
score screen panel, as shown in Listing 2-15.

Listing 2-15.  CSS for Score Screen Panel

/* Score Screen */
#scorescreen {
 height:60px;
 font: 32px Comic Sans MS;
 text-shadow: 0 0 2px #000;
 color:white;
}

#scorescreen img{
 opacity:0.6;
 top:10px;
 position:relative;
 padding-left:10px;
 cursor:pointer;
}

Chapter 2 ■ Creating a Basic Game World

33

Our crude implementation of panning currently causes the screen to slowly pan toward the right until the image
is no longer visible. Don’t worry, we will be working on a better implementation soon.

As you can see, the clouds in the background move slower than the foreground. We could, potentially, add more
layers and move them at different speeds to build more of an effect, but the two images illustrate this effect fairly well.

Now that we have a basic level in place, we will add the ability to handle mouse input and implement panning
around the level with game states.

Handling Mouse Input
JavaScript has several events that we can use to capture mouse input—mousedown, mouseup, and mousemove. To keep
things simple we will use jQuery to create a separate mouse object inside game.js to handle all the mouse events, as
shown in Listing 2-16.

Figure 2-5.  A basic level with the score

#scorescreen #score {
 position:absolute;
 top:5px;
 right:20px;
}

The scorescreen layer, unlike the other layers, is just a narrow band at the top of our game. We also add some
transparency to ensure that the images (for stopping music and restarting the level) do not distract from the rest of the
game.

When we run this code and try to start a level, we should see a basic level with the Score bar in the top-right
corner, as shown in Figure 2-5.

Chapter 2 ■ Creating a Basic Game World

34

Listing 2-16.  Handling Mouse Events

var mouse = {
 x:0,
 y:0,
 down:false,
 init:function(){
 $('#gamecanvas').mousemove(mouse.mousemovehandler);
 $('#gamecanvas').mousedown(mouse.mousedownhandler);
 $('#gamecanvas').mouseup(mouse.mouseuphandler);
 $('#gamecanvas').mouseout(mouse.mouseuphandler);
 },
 mousemovehandler:function(ev){
 var offset = $('#gamecanvas').offset();

 mouse.x = ev.pageX - offset.left;
 mouse.y = ev.pageY - offset.top;

 if (mouse.down) {
 mouse.dragging = true;
 }
 },
 mousedownhandler:function(ev){
 mouse.down = true;
 mouse.downX = mouse.x;
 mouse.downY = mouse.y;
 ev.originalEvent.preventDefault();
 },
 mouseuphandler:function(ev){
 mouse.down = false;
 mouse.dragging = false;
 }
}

This mouse object has an init() method that sets event handlers for when the mouse is moved, when a mouse
button is pressed or released, and when the mouse leaves the canvas area. The following are the three handler
methods that we use:

•	 mousemovehandler(): Uses jQuery’s offset() method and the event object’s pageX and pageY
properties to calculate the x and y coordinates of the mouse relative to the top-left corner of
the canvas and stores them. It also checks whether the mouse button is pressed down while
the mouse is being moved and, if so, sets the dragging variable to true.

•	 mousedownhandler(): Sets the mouse.down variable to true and stores the location where the
mouse button was pressed. It additionally contains an extra line to prevent the default browser
behavior of the click button.

•	 mouseuphandler(): Sets the down and dragging variables to false. If the mouse leaves the
canvas area, we call this same method.

Now that we have these methods in place, we can always add more code to interact with the game elements as
needed. We also have access to the mouse.x, mouse.y, mouse.dragging, and mouse.down properties from anywhere
within the game. As with all the previous init() methods, we call this method from game.init(), so it now looks as
shown in Listing 2-17.

n

Chapter 2 ■ Creating a Basic Game World

35

Listing 2-17.  Initializing the Mouse from game.init()

init: function(){
 // Initialize objects
 levels.init();
 loader.init();
 mouse.init();

 // Hide all game layers and display the start screen
 $('.gamelayer').hide();
 $('#gamestartscreen').show();

 //Get handler for game canvas and context
 game.canvas = $('#gamecanvas')[0];
 game.context = game.canvas.getContext('2d');
},

With this bit of functionality in place, let’s now implement some basic game states and panning.

Defining Our Game States
Remember the game.mode variable that we briefly mentioned earlier when we were creating game.start()? Well, this
is where it comes into the picture. We will be storing the current state of our game in this variable. Some of the modes
or states that we expect our game to go through are as follows:

•	 intro: The level has just loaded and the game will pan around the level once to show the
player everything in the level.

•	 load-next-hero: The game checks whether there is another hero to load onto the slingshot
and, if so, loads the hero. If we run out of heroes or all the villains have been destroyed, the
level ends.

•	 wait-for-firing: The game pans back to the slingshot area and waits for the user to fire the
“hero.” At this point, we are waiting for the user to click the hero. The user may also optionally
drag the canvas screen with the mouse to pan around the level.

•	 firing: This happens after the user clicks the hero but before the user releases the mouse
button. At this point, we are waiting for the user to drag the mouse around to decide the angle
and height at which to fire the hero.

•	 fired: This happens after the user releases the mouse button. At this point, we launch the
hero and let the physics engine handle everything while the user just watches. The game will
pan so that the user can follow the path of the hero as far as possible.

We may implement more states as needed. One thing to note about these different states is that only one of them
is possible at a time, and there are clear conditions for transitioning from one state to another, and what is possible
during each state. This construct is popularly known as a finite state machine in computer science. We will be using
these states to create some simple conditions for our panning code, as shown in Listing 2-18. All of this code goes
inside the game object after the start() method.

Listing 2-18.  Implementing Panning Using the Game Modes

// Maximum panning speed per frame in pixels
maxSpeed:3,

Chapter 2 ■ Creating a Basic Game World

36

// Minimum and Maximum panning offset
minOffset:0,
maxOffset:300,
// Current panning offset
offsetLeft:0,
// The game score
score:0,

//Pan the screen to center on newCenter
panTo:function(newCenter){
 if (Math.abs(newCenter-game.offsetLeft-game.canvas.width/4) > 0
 && game.offsetLeft <= game.maxOffset && game.offsetLeft > = game.minOffset){

 var deltaX = Math.round((newCenter-game.offsetLeft-game.canvas.width/4)/2);
 if (deltaX && Math.abs(deltaX) > game.maxSpeed){
 deltaX = game.maxSpeed*Math.abs(deltaX)/(deltaX);
 }
 game.offsetLeft + = deltaX;
 } else {

 return true;
 }
 if (game.offsetLeft < game.minOffset){
 game.offsetLeft = game.minOffset;
 return true;
 } else if (game.offsetLeft > game.maxOffset){
 game.offsetLeft = game.maxOffset;
 return true;
 }
 return false;
},
handlePanning:function(){
 if(game.mode=="intro"){
 if(game.panTo(700)){
 game.mode = "load-next-hero";
 }
 }

 if(game.mode=="wait-for-firing"){
 if (mouse.dragging){
 game.panTo(mouse.x + game.offsetLeft)
 } else {
 game.panTo(game.slingshotX);
 }
 }

 if (game.mode=="load-next-hero"){
 // TODO:
 // Check if any villains are alive, if not, end the level (success)
 // Check if there are any more heroes left to load, if not end the level (failure)

Chapter 2 ■ Creating a BasiC game World

37

 // Load the hero and set mode to wait-for-firing
 game.mode = "wait-for-firing";
 }

 if(game.mode == "firing"){
 game.panTo(game.slingshotX);
 }

 if (game.mode == "fired"){
 // TODO:
 // Pan to wherever the hero currently is
 }
},

We first create a method called panTo() that slowly pans the screen to a given x coordinate and returns true
if the coordinate is near the center of the screen or if the screen has panned to the extreme left or right. It also
caps the panning speed using maxSpeed so that the panning never becomes too fast. We have also improved the
handlePanning() method so it implements a few of the game states we described earlier. We haven’t implemented the
load-current-hero, firing, and fired states yet.

If we run the code we have so far, we will see that as the level starts, the screen pans toward the right until we
reach the right extreme and panTo() returns true (see Figure 2-6). The game mode then changes from intro to
wait-for-firing and the screen slowly pans back to the starting position and waits for user input. We can also drag
the mouse to the left or right of the screen to look around the level.

Figure 2-6. The final result: panning around the level

Chapter 2 ■ Creating a Basic Game World

38

Summary
In this chapter we set out to develop the basic framework for our game.

We started by defining and implementing a splash screen and game menu. We then created a simple level system
and an asset loader to dynamically load the images used by each level. We set up the game canvas and animation loop
and implemented parallax scrolling to give the illusion of depth. We used game states to simplify our game flow and
move around our level in an interesting way. Finally, we captured and used mouse events to let the user pan around
the level.

At this point we have a basic game world that we can interact with, so we are ready to add the various game
entities and game physics.

In the next chapter we will be learning the basics of the Box2D physics engine and using it to model the physics
for our game. We will learn how to animate our characters using data from the physics engine. We will then integrate
this engine with our existing framework so that the game entities move realistically within our game world, after
which we can actually start playing the game.

