
C H A P T E R 11

Pricing Tools in Financial
Engineering

1. Introduction

We have thus far proceeded without a discussion of asset pricingmodelsand the tools associated
with them, as financial engineering has many important dimensions besides pricing. In this
chapter, we will discuss models of asset pricing, albeit in a very simple context. A summary
chapter on pricing tools would unify some of the previous topics, and show the subtle connections
between them. The discussion will approach the issue using a framework that is a natural
extension of the financial engineering logic utilized thus far.

Pricing comes with at leasttwo problems that seem, at first, difficult to surmount in any
satisfactory way. Investors like return, but dislike risk. This means that assets associated with
nondiversifiable risks will carryrisk premia. But, how can we measure such risk premia objec-
tively when buying assets is essentially a matter ofsubjectivepreferences? Modeling risk premia
usingutility functionsmay be feasible theoretically, but this is not attractive from a trader’s point
of view if hundreds of millions of dollars are involved in the process. The potential relationship
between risk premia and utility functions of players in the markets is the first unpleasant aspect
of practical pricing decisions.

The second problem follows from the first. One way or another, the pricing approach needs
to be based on measuring the volatility of future cash flows. But volatility is associated with
randomness and with some probability distribution. How can an asset pricing approach that
intends to be applicable in practice obtain a reasonable set of real-world probabilities?1

Modern finance has found an ingenious andpracticalway of dealing with both these ques-
tions simultaneously. Instead of using a framework where risk premia are modeled explic-
itly, the professiontransformsa problem with risk premia into one where there are no risk
premia. Interestingly, this transformation is done in a way that the relevant probability dis-
tribution ceases to be thereal-world probabilityand, instead, becomes amarket-determined

1 Note that the subjective nature of risk premia was in the realm of pure economic theory, whereas the issue of
obtaining satisfactory real-world probability distributions falls within the domain of econometric theory.
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probability that can be numerically calculated atany point in time if there is a reasonable
number of liquid instruments.2 With this approach, the assets will be priced in anartificial
risk-neutral environment where the risk premia are indirectly taken into account. This method-
ology is labeled theMartingale approach. It is a powerful tool in practical asset pricing and risk
management.

A newcomer to financial engineering may find it hard to believe that a more or less unified
theory for pricing financial assets that can be successfully applied in real-world pricing actually
exists. After all, there are many different types of assets, and not all of them seem amenable to
the same pricing methodology, even at a theoretical level. A market practitioner may already
have heard of risk-neutral pricing, but just like the newcomer to financial engineering, he or she
may regard the basic theory behind it as veryabstract. And yet, the theory is surprisingly potent.
This chapter provides a discussion of this methodology from the point of view of a financial
engineer. Hence, even though the topic is asset pricing, the way we approach it is based on ideas
developed in previous chapters. Basically, this pricing methodology is presented as a general
approach to synthetic asset creation.

Of course, like any other theory, this methodology depends on some strict assumptions. The
methods used in this text will uniformly make one common assumption that needs to be pointed
out at the start. Only those models that assumecomplete marketsare discussed. In heuristic
terms, when markets are “complete,” there are “enough” liquid instruments for obtaining the
working probability distribution.

This chapter progressively introduces a number of important theoretical results that are used
in pricing, hedging, and risk management application. Themainresult is called the fundamen-
tal theorem of asset pricing. Instead of a mathematical proof, we use afinancial engineering
argumentto justify it, and a number of important consequences will emerge. Throughout the
chapter, we will single out the results that have practical implications.

2. Summary of Pricing Approaches

In this section we remind the reader of some important issues from earlier chapters. Suppose we
want to find thefair market price of an instrument. First, we construct a synthetic equivalent to
this instrument using liquid contracts that trade in financial markets. Clearly, this requires that
such contracts are indeed available. Second, once these liquid contracts are found, an arbitrage
argument is used. The cost of thereplicating portfolioshould equal the cost of the instrument
we are trying to price. Third, a trader would add a proper margin to this cost and thus obtain the
fair price.

In earlier chapters, we obtained synthetics for forward rate agreements (FRAs), foreign-
exchange (FX) forwards, and several other quasi-linear instruments. Each of these constitutes
an early example of asset pricing. Obtain the synthetic and see how much it costs. By adding a
profit to this cost, the fair market price is obtained. It turns out that we canextendthis practical
approach and obtain a general theory.

It should be reemphasized thatpricing andhedgingefforts can sometimes be regarded as
two sides of the same coin. In fact, hedging a product requires finding a replicating portfolio
and then using it to cover the position in the original asset. If the trader is long in the original
instrument, he or she would be short in the synthetic, and vice versa. This way, exposures to risks
would cancel out and the position would become “riskless.” This process results in the creation
of a replicating portfolio whose cost cannot be that different from the price of the original asset.

2 That is to say, instead of using historical data, we can derive the desired probability distribution from the current
quotes.
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Thus, a hedge will transfer unwanted risks to other parties but, at the same time, will provide a
way to price the original asset.3

Pricing theory is also useful for the creation of “new products.” A new product is basically
a series of contingent cash flows. We would, first, put together a combination of financial
instruments that have the same cash flows. Then, we would write a separate contract and sell
these cash flows to others under anew name. For example, a strip of FRAs or futures can be
purchased and resulting cash flows are then labeled a swap and sold to others. The new product
is, in fact, a dynamically maintained portfolio of existing instruments, and its fair cost will equal
the sum of the price of its constituents.

3. The Framework

The pricing framework that we use emphasizes important aspects of the theory within a real-
world setting. We assume thatm liquid asset prices are observed at timesti, i = 1, 2 . . . .
The timeti price of thekth asset is denoted bySkti

. The latter can represent credit, stocks,
fixed-income instruments, the corresponding derivatives, or commodity prices.

In theory, a typicalSkti can assume any real value. This makes the number of possible values
infinite anduncountable. But in practice, every price is quoted to a small number of decimal
places and, hence, has a countable number of possible future values. Foreign exchange rates,
for example, are in general quoted to four decimal places. This brings us to the next important
notion that we would like to introduce.

3.1. States of the World

Lett0 denote the “present,” and consider thekth asset priceSkT , at a future date,T = ti, for some
0 < i. At time t0, theSkT will be a random variable.4 Let the symbolωj , with j = 1, . . . n
represent time-T states of the worldthat relate to the random variableSkT .5 We assume that
n ≤ m, which amounts to saying that there are at least as many liquid assets as there are time-T
states of the world. For example, it is common practice in financial markets to assume a “bullish”
state, a “bearish” state, and a “no-change” state. Traders expect prices in the future to be either
“higher,” “lower,” or to “remain the same.” Theωj generalizes this characterization, and makes
it operational.

Example:

In this example, we construct the states of the world that relate to some asset whose time
ti price is denoted bySti

. Without any loss of generality, let

St0 = 100 (1)

Suppose, at a future dateT , with tn = T , there are onlyn = 4 states of the world. We
consider the task of defining these states.

3 If the hedge is not “perfect,” the market maker will add another margin to the cost to account for any small deviation
in the sensitivities toward the underlying risks. For example, if some exotic option cannot be perfectly hedged by the
spot and the cash, then the market maker will increase or decrease the price to take into account these imperfections.

4 The current value of the assetSkt0 , on the other hand, is known.

5 According to this,ωj may also need aT subscript. But we ignore it and ask the reader to remember this point.
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1. Set the value of some grid parameterΔS to assign neighboring values ofST into
a single state. For example, let

ΔS = 2 (2)

2. Next, pick two upper and lower bounds[Smin, Smax] such that the probability
of ST being outside this interval is relatively small and that excursions outside
this range can safely be ignored. For example, letSmax = 104 and Smin = 96 .
Accordingly, the events104 < ST and ST < 96 are considered unlikely to
occur, and, hence, a detailed breakdown of these states of the world is not needed.
Clearly, the choice of numerical values for[Smin, Smax] depends, among other
things, on the perceived volatility ofSt during the period[t0, T ].6

3. The states of the world can then be defined in the following fashion:

ω1 = {ST such that ST < Smin} (3)

ω2 = {ST such that ST ∈ [Smin, Smin + ΔS]} (4)

ω3 = {ST such that ST ∈ [Smin + ΔS, Smin + 2ΔS = Smax]} (5)

ω4 = {ST such that Smax < ST } (6)

This situation is shown in Figure 11-1.

Here, the total number of states of the world depends on the size of the grid parameter
ΔS, and on the choice of upper and lower bounds[Smin, Smax]. These, in turn, depend on
market psychology at timet0. For example, selecting the total number of states asn = 4
could be justified, if the ranges forST shown here were the only ones found relevant for
pricing and risk-management problems faced during that particular day. If a problem under
consideration requires afineror coarsersubdivision of the future, the value forn would change
accordingly.

3.2. The Payoff Matrix

The next step in obtaining the fundamental theorem of asset pricing is the definition of a payoff
matrix for periodT . Time-T values of the assets,Skt, depend on the state of the world,ωi, that
will occur at timeT . Given that we are working with a finite number of states of the world,

Smin

�15 (S , Smin )

�45 (Smax#S )

�35 (Smin1 ΔS #S , Smin1 2ΔS )

�25 (Smin#S , Smin1 ΔS )

Smin1 ΔS Smax

FIGURE 11-1

6 In practice, these upper and lower bounds have to be properlycalibratedto observed liquid, arbitrage-free prices.
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possible valuesfor these assets would be easy to list. Letzi
k represent the value assumed by the

kth asset in stateωi, at time-T :

Si
kT = zi

k (7)

Then, for the firstn assets,n ≤ m, we can form the following payoff matrix for timeT :

D =

⎛
⎝z1

1 · · · zn
1

· · ·
z1

n · · · zn
n

⎞
⎠ (8)

A typical row of this matrix would represent possible values of aparticular assetin different
states of the world. A typical column represents different asset prices, in aparticular state of the
world. The definition ofωi should automatically lead to a definition of the possible values for
assets under consideration, as shown in the previous example.

The fundamental theorem of asset pricing is about how “current” asset prices,Skt, relate
to the possible values represented by matrixD. We form a matrix equation that will play an
important role in the next three chapters.

3.3. The Fundamental Theorem

Consider thelinear system of equations defined for a series ofQi, indexed by the state of the
world i:

⎛
⎝S1t0

· · ·
Snt0

⎞
⎠=

⎛
⎝z1

1 · · · zn
1

· · ·
z1

n · · · zn
n

⎞
⎠

⎛
⎝ Q1

· · ·
Qn

⎞
⎠ (9)

The left-hand side shows the vector of current liquid asset prices observed at timet0. The right-
hand side has two components. The first is the matrixD of possible values for these prices at
timeT , and the second is a vector of constants,{Q1, . . . , Qn}. The fundamental theorem of
asset pricing concerns this matrix equation and the properties of the{Qi}. The theorem can be
stated heuristically as follows:

Theorem The timet0 prices for the{Skt0} are arbitrage-free if and only if{Qi} exist
and are positive.

Thus, the theorem actually works both ways. IfSkt0 are arbitrage-free, thenQi exist and are all
positive. IfQi exist and are positive, then theSkt0 are arbitrage-free.

The fundamental theorem of asset pricing provides aunifiedpricing tool for pricing real-
world assets. In the remaining part of this chapter, we derive important implications of this
theorem. These can be regarded ascorollaries that are exploited routinely in asset pricing.
The first of these corollaries is the existence ofsyntheticprobabilities. However, before we
discuss these results we need to motivate the{Qi} and show why the theorem holds.

3.4. Definition of an Arbitrage Opportunity

What is meant by arbitrage-free prices? To answer this question we need to definearbitrage
opportunityformally. Formal definition of the framework outlined in this section provides this.
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Consider the asset pricesS1t, . . . , Skt. Associate the portfolio weightsθi with assetSit. Then
we say that there is an arbitrage opportunity if either of the following two conditions hold.

1. A portfolio with weightsθi can be found such that:

k∑
i=1

θiSit = 0 (10)

simultaneously with

0 ≤
k∑

i=1

θiSiT (11)

According to these conditions, the market practitioner advances no cash at timet to form
the portfolio, but still has access to some non-zero gains at timeT . This is the first type
of arbitrage opportunity.

2. A portfolio with weightsθi can be found such that:

k∑
i=1

θiSit ≤ 0 (12)

simultaneously with

k∑
i=1

θiSiT = 0 (13)

In this case the market practitioner receives cash at timet while forming the portfolio,
but has no liabilities at timeT .

It is clear that in either case, the size of thesearbitrage portfoliosis arbitrary since no liabilities
are incurred. The formal definition of arbitrage-free prices requires that such portfolios not be
feasible at the “current” prices{Sit}.

Notice that what market professionals call anarbitrage strategyis very different from this
formal definition of arbitrage opportunity. In general, when practitioners talk about “arb” they
mean positions that have a relatively small probability of losing money. Clearly this violates
both of the conditions mentioned above. The methods introduced in this chapter deal with the
lack of formal arbitrage opportunities and not with the market practitioners’arbitrage strategies.
It should be remembered that it is the formal no-arbitrage condition that provides the important
tools used in pricing and risk-management.

3.5. Interpreting the Qi: State Prices

Given the states of the worldωi, i = 1, . . . , n, we can write the preceding matrix equation
for the special caseof two important sets of instruments that are essential to understanding
arbitrage-free pricing. Suppose the first assetS1t is a risk-free savings depositaccount and
assume, without any loss of generality, thatti represents years.7 If 1 dollar is deposited at time
t0, (1 + rt0) can be earned at timet1 without any risk ofdefault. The rt0 is the rate that is
observed as of timet0.

7 This simplifies the notation, since the days’ adjustment parameter will equal one.
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The second set of instruments areelementary insurance contracts. We denote them byCi.
These contracts are defined in the following way:

• C1 pays $1 at timeT if ω1 occurs. Otherwise it pays zero.

· · ·
• Cn pays $1 at timeT if ωn occurs. Otherwise it pays zero.

If a market practitioner considers stateωi as “risky,” he or she can buy a desired number ofCi’s
as insurance toguaranteeany needed cash flow in that state.

Suppose now that allCi are actively traded at timet0. Then, according to the matrix equation,
the correct arbitrage-free prices of these contracts are given byQi. This is the case since plugging
the current prices of the savings account and theCi at timet0 into the matrix equation (9) gives8⎡

⎢⎢⎣
1

C1
· · ·
Cn

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

(1 + rt0) · · · · · · (1 + rt0)
1 0 · · · 0

· · · · · · · · · · · ·
0 · · · 0 1

⎤
⎥⎥⎦

⎡
⎣ Q1

· · ·
Qn

⎤
⎦ (14)

Following from this matrix equation, theQi have three important properties. First, we see that
they areequalto the prices of the elementary insurance contracts:

Ci = Qi (15)

It is for this reason that theQi are also calledstate prices. Second, we can show that if interest
rates are positive, the sum of the time-t0 prices ofCi is less than one. Consider the following:
A portfolio that consists of buyingone of eachinsurance contractCi at timet0 will guarantee
1 dollar at timet0 no matter which state,ωi, is realized at timeT . But, a guaranteed future dollar
should be worthlessthan a current dollar at hand, as long as interest rates are positive. This
means that the sum ofQi paid for the elementary contracts at timet0 should satisfy

Q1 + Q2 + · · · + Qn < 1 (16)

From the first row of the matrix equation in (14) we can write

n∑
i=1

Qi(1 + rt0) = 1 (17)

After rearranging,

Q1 + Q2 + · · · + Qn =
1

(1 + rt0)
(18)

The third property is a little harder to see. As the fundamental theorem states, none of the
Qi can benegativeor zero if theCi are indeedarbitrage-free. We show this with a simple
counter-example.

Example:

Suppose we haven = 4 and that the first elementary contract has a negative price,
C1 = −1 . Without any loss of generality, suppose all other elementary insurance con-
tracts have a positive price. Then the portfolio

{(Q2 + Q3 + Q4) unit of C1, 1 unit of C2, 1 unit of C3, 1 unit of C4} (19)

8 D in our setup is a(n + 1)xn matrix.
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has zero cost at timet0, and yet will guarantee a positive return at timet1. More precisely,
the portfolio returns 1 dollar in states 2 to 4 and(Q2 + Q3 + Q4) dollars in state 1.

Hence, as long as one or more of theQi are negative, there will always be an arbitrage
opportunity. A trader can “buy” the contract(s) with a negative price and use the cash generated
to purchase the other contracts. This way, a positive return atT is guaranteed, while at the same
time the zero-cost structure of the initial portfolio is maintained. For such arbitrage opportunities
not to exist, we need0 < Qi for all i.

3.5.1. Remarks

Before going further, we ask two questions that may have already troubled the reader given the
financial engineering approach we adopted in this book.

• Do insurance contracts such asCi exist in the real world? Are they actively traded?
• Is the assumption of a smallfinitenumber of states of the world realistic? How can such

a restrictive view of the future be useful in pricing real-world instruments?

In the next few sections we will show that the answer to both of these questions is a qualified
yes. To understand this, we need to relate the elementary insurance contracts to the concept of
options. Options can be considered as ways of trading baskets ofCi’s. A typicalCi pays 1 dollar
if statei occurs and nothing in all other states. Thus, it is clear that option payoffs at expiration
are different from those of elementary contracts. Options pay nothing if they expire out-of-the-
money, but they pay,(ST −K) if they expire in-the-money. This means that depending on how
we define the statesωi, unlike the elementary contracts, options can make payments inmore
than one state. But this difference is really not that important since we can get all desiredCi

from option prices, if options trade for all strikesK. In other words, the pricing framework that
we are discussing here will be much more useful in practice than it seems at first.

As to the second question, it has to be said that, in practice, few strikes of an option series
trade actively. This suggests that the finite state assumption may not be that unrealistic after all.

4. An Application

The framework based on state prices and elementary insurance contracts is a surprisingly potent
and realistic pricing tool. Before going any further and obtaining more results from the fun-
damental theorem of asset pricing, we prefer to provide a real-world example. The following
reading deals with the S&P500 index and its associated options.

Example:

The S&P500 is an index of 500 leading stocks from the United States. It is closely
monitored by market participants and traded in futures markets. One can buy and sell
liquid options written on the S&P500 at the Chicago Board of Options Exchange (CBOE).
These options, with an expiration date of December 2001 are shown in Table 11-1 as
they were quoted on August 10, 2001.

At the time these data were gathered, the index was at 1187. The three most liquid call
options are

{1275– Call, 1200– Call, 1350– Call} (20)
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TABLE 11-1

Calls Last sale Bid Ask Volume Open interest

Dec 1175 67.1 68 70 51 1378
Dec 1200 46.5 52.8 54.8 150 8570
Dec 1225 41 40.3 42.3 1 6792
Dec 1250 28.5 29.6 31.6 0 11873
Dec 1275 22.8 21.3 23.3 201 6979
Dec 1300 15.8 15 16.2 34 16362
Dec 1325 9.5 10 11 0 9281
Dec 1350 6.8 6.3 7.3 125 8916
Dec 1375 4.1 4 4.7 0 2818
Dec 1400 2.5 2.5 3.2 10 17730
Dec 1425 1.4 1.4 1.85 0 4464
Dec 1450 0.9 0.8 1.25 9 9383
Dec 1475 0.5 0.35 0.8 0 122

Puts Last sale Bid Ask Volume Open interest

Dec 800 1.65 1.2 1.65 10 1214
Dec 900 4.3 3.4 4.1 24 11449
Dec 950 5.4 5.3 6.3 10 8349
Dec 995 10.1 8.5 9.5 0 11836
Dec 1025 13 11.1 12.6 11 5614
Dec 1050 13.6 14 15.5 106 19483
Dec 1060 16.5 15.7 17.2 1 1597
Dec 1075 22.5 18 19.5 1 316
Dec 1100 26 22.7 24.7 0 17947
Dec 1150 39 35.3 37.3 2 16587
Dec 1175 44 44.1 46.1 14 4897
Dec 1200 53 53.9 55.9 897 26949

The three most liquid put options, on the other hand, are

{1200−Put , 1050−Put , 900−Put} (21)

Not surprisingly, all the liquid options are out-of-the-money as liquid options generally
are.9

We will now show how this information can be used to obtain (1)the states of the worldωi,
(2) the state pricesQi, and (3) the corresponding synthetic probabilities associated with theQi.
We will do this in the simple setting used thus far.

4.1. Obtaining the ωi

A financial engineer always operates in response to a particular kind of problem and the states
of the world to be defined relative to the needs,at that time. In our present example we are
working with S&P500 options, which means that the focus is on equity markets. Hence, the
corresponding states of the world would relate to different states in which the U.S. stock market

9 Buying and selling in-the-money options does not make much sense for market professionals. Practitioners carry
these options by borrowing the necessary funds and hedge them immediately. Hence, any intrinsic value is offset by the
hedge side anyway. Yet, the convexity of in-the-money options will be the same as with those that are out-of-the-money.
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might be at a future date. Also, we need to take into account that trader behavior singles out
a relatively small number ofliquid options with expirations of about three months. For the
following example refer back to Table 11-1.

Example:

We letST represent the value of the S&P500 at expiration and then use the strike prices
Ki of the liquid options to define the future states of the world. In fact, strike prices of puts
and calls discussed in the preceding example divide theST -axis into intervals of equal
length. But only a handful of these options are liquid, implying that fine subdivisions
were perhaps not needed by the markets for that day and that particular expiration.
Accordingly, we can use the strike prices of the three liquid out-of-the-money puts to
obtain the intervals

ω1 = ST < 900 (22)

ω2 = 900 ≤ ST < 1050 (23)

ω3 = 1050 ≤ ST < 1200 (24)

Note that the liquid puts lead to intervals of equal length. It is interesting, but also
expected, that the liquid options have this kind of regularity in their strikes. Next, we use
the three out-of-the-money calls to get three intervals to define three additional states of
the world as

ω4 = 1200 ≤ ST < 1275 (25)

ω5 = 1275 ≤ ST < 1350 (26)

ω6 = 1350 ≤ ST (27)

Here, the last interval is obtained from the highest-strike liquid call option. Figure 11-2
shows these options and the implied intervals. Since these intervals relate to future values
of ST , we consider them the relevant states of the world forST .

We pick the midpoint of the bounded intervals as an approximation to that particular
state. Let these midpoints be denoted by{S̄i, i = 2 , . . . , 5}. These midpoints can
then be used as a finite set of points that representωi. For the first and last half-open
intervals, we select the values of the two extreme points,S̄1, andS̄6, arbitrarily for the
time being. We let

S̄1 = 750 (28)

S̄6 = 1400 (29)

so that the distance between̄Si remains constant. This arbitrary selection of the “end
states” is clearly unsatisfactory. In fact, by doing this we are in a sense setting the
volatility of the random variables arbitrarily. We can, however calibrate our selection.
Once our educated guesses are plugged in, we can try to adjust these extreme values so
that the resultingQi all become positive and price some other liquid asset correctly. In
a sense, calibration is an attempt to see which value of the two “end states” replicates
the observed prices. But for the time being, we ignore this issue and assume that the end
points are selected correctly.

It is open to debate if selecting just six states of the world, as in the example, might represent
future possibilities concerningST accurately. Traders dealing with the risk in the example must
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Out-of-the-money puts Out-of-the-money calls

Payoff in
state 3

K1
900

K2
1050

K3
1200

K5
1275

K6
1350

S

Payoffs in
state 2

State 1 State 2 State 3 State 4 State 5 State 6

FIGURE 11-2

have thought so, since on that particular date trading approximatelysix liquid options was
sufficient to resolve their tasks. It seems that if afinersubdivision of the future possibilities were
more appropriate, then more liquid strikes would have been traded.

Hence, as usual in financial engineering, the specific values ofωi that we select are based
on the values of liquid instruments. In our case, the possible states of the world were chosen as
dictated by liquid call and put options.

4.2. Elementary Contracts and Options

Elementary insurance contractsCi do not trade directly in world financial markets. Yet, the
Ci are not far from a well-known instrument class—options—and they trade “indirectly.”
This section shows how elementary insurance contracts can be obtained from options, and
vice versa. Plain vanilla options are, in fact, close relatives of elementary insurance con-
tracts. The best way to see this is to consider a numerical example. (Generalizations are
straightforward.)

Example:

Start with the first and the last options selected for the previous example. Note that the
900-put is equivalent toK1 − S̄1 units ofC1 because it pays approximately this many
dollars if stateω1 occurs and nothing in all other states. Similarly, the 1350-call is
equivalent toS̄6 − K6 units ofC6 because it pays approximately this many dollars if
state 6 occurs and nothing otherwise.

The other calls and puts have payoffs in more than one state, but they also relate to
elementary contracts in straightforward ways. For example, the 1050-put is equivalent
to a portfolio of two elementary insurance contracts,K2 − S̄1 units ofC1 andK2 − S̄2

units ofC2, because it makes these payments in states 1 and 2, respectively, and nothing
else in other states. In fact, pursuing this reasoning, we can obtain the following matrix
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equation between the payoffs of elementary contractsC1, . . . , C6 and the option
prices:

⎡
⎢⎢⎢⎢⎢⎢⎣

900-Put
1050-Put
1200-Put
1200-Call
1275-Call
1350-Call

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

z1
1 0 0 0 0 0

z1
2 z2

2 0 0 0 0
z1
3 z2

3 z3
3 0 0 0

0 0 0 z4
4 z5

4 z6
4

0 0 0 0 z5
5 z6

5
0 0 0 0 0 z6

6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

C1
C2
C3
C4
C5
C6

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

This equation holds since we have

Qi = Ci (31)

for all i.10

Thus, given the arbitrage-free values of traded puts and calls with different strikes but similar
in every other aspect, we can easily obtain the values of the elementary insurance contractsCi

by inverting the(6 × 6) matrix on the right side. In fact, it is interesting to see that the matrix
equation in the example contains two triangular subsystems that can be solved separately and
recursively.

Hence, the existence of liquid options makes a direct application of the fundamental theorem
of asset pricing possible. Given a large enough number of liquid option contracts, we can obtain
the state prices,Qi, if these exist, and, if they are all positive, use them to price other illiquid
assets that depend on the same risk.11 Obviously, when traders deal with interest rate, or exchange
rate risk, or when they are interested in pricing contracts on commodities, they would use
liquid options forthoseparticular sectors and work with different definitions of the state of the
world.

4.3. Elementary Contracts and Replication

We now show how elementary insurance contracts and options that belong to a series can be used
in replicating instruments witharbitrary payoffs. Consider an arbitrary financial asset,St, that
is worthzi

T in state of the worldωi, i = 1, . . . , n, at timeT . Givenn elementary insurance
contractsCi, we can immediately form areplicating portfoliofor this asset. Assuming, without
any loss of generality, that the time-T payoffs of theSt asset are denoted by0 < zi

T , we can
consider buying the following portfolio:

{z1
T units of C1, z2

T units of C2, . . . , zn
T units of Cn} (32)

At timeT , this portfolio should be worth exactly the same as theSt, since whatever state occurs,
the basket of insurance contracts will make the same time-T payoff as the original asset. This
provides an immediatesyntheticfor theSt. Accordingly, if there are no arbitrage opportunities,
the value of the portfolio and the value of theSt will be identical as of timet as well.12 We
consider an example.

10 If one needs to get the values ofCi from the traded puts and calls, one should start with the first put, then move
to the second put, then the third. The same strategy can be repeated with the last call and so on.

11 Here, this risk is the S&P500 index.

12 As usual, it is assumed that theSt makes no other interim payouts.
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Example:

Take any four independent assetsSkt, k = 1 , . . . , 4 with different payoffs,zi
k, in the

states{ωi, i = 1 , . . . , 4}. We can express each one of these assets in terms of the
elementary insurance contracts. In other words, we can find one synthetic for eachSkt

by purchasing the portfolios:

{z1
k unit of C1, z2

k unit of C2, z3
k unit of C3, z4

k unit of C4} (33)

Putting these in matrix form, we see that arbitrage-free values,Skt0 , of these assets at
timet0 have to satisfy the matrix equation:

⎡
⎢⎢⎢⎢⎣

1
S1t0

S2t0

S3t0

S4t0

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 + rt0 1 + rt0 1 + rt0 1 + rt0

z1
1 z2

1 z3
1 z4

1
z1
2 z2

2 z3
2 z4

2
z1
3 z2

3 z3
3 z4

3
z1
4 z2

4 z3
4 z4

4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ (34)

where the matrix on the right-hand side contains all possible values of the assetsSkt in
statesωi, at time T.13

Hence, given the prices of actively traded elementary contractsCi, we can easily calculate
the time-t cost of forming the portfolio:

Cost = C1z
1
T + C2z

2
T + · · · + Cnzn

T (35)

This can be regarded as the cost basis for theSt asset. Adding a proper margin to it will give
the fair market priceSt.

Example:

Suppose theSt-asset has the following payoffs in the states of the worldi = 1, . . . , 4:

{z1
T = 10, z2

T = 1, z2
T = 14, z2

T = 16} (36)

Then, buying 10 units of the first insurance contractC1 will guarantee the 10 in the first
state, and so on.

Suppose we observe the following prices for the elementary insurance contracts:

C1 = .3, C2 = .2, C3 = .4, C4 = .07 (37)

Then the total cost of the insurance contracts purchased will be

Cost = (.3)10 + (.2)(1) + (.4)14 + (.07)16 (38)

= 9.92 (39)

This should equal the current price ofSt once a proper profit margin is added.

13 For notational simplicity, we eliminated time subscripts in the matrix equation. Also remember that the time index
represents, years and thatCi = Qi.



328 C H A P T E R 11. Pricing Tools in Financial Engineering

Clearly, if such elementary insurance contracts actively traded in financial markets, the job
of a financial engineer would be greatly simplified. It would be straightforward to construct
synthetics forany asset, and then price them using the cost of the replicating portfolios as
shown in the example. However, there is a close connection betweenCi and options of the same
series that differ only in their strikes. We saw how to obtain theCi from liquid option prices.
Accordingly, if options with a broad array of strikes trade in financial markets, then traders can
createstaticreplicating portfolios for assets with arbitrary payoffs.14

5. Implications of the Fundamental Theorem

The fundamental theorem of asset pricing has a number of implications that play a critical role in
financial engineering and derivatives pricing. First, using this theorem we can obtain probability
distributions that can be used in asset pricing. These probability distributions will be objective
and operational. Second, the theorem leads to the so-called Martingale representation of asset
prices. Such a representation is useful in modeling asset price dynamics. Third, we will see that
the Martingale representation can serve to objectively set expected asset returns. This property
eliminates the need to model and estimate the “drift factors” in asset price dynamics. We will
now study these issues in more detail.

5.1. Result 1: Risk-Adjusted Probabilities

TheQi introduced in the previous section can be modified judiciously in order to obtain con-
venient probability distributions that the financial engineer can work with. These distributions
donotprovide real-world odds on the states of the worldωi, and hence cannot be used directly
in econometric prediction. Yet theydo yield correct arbitrage-free prices. (This section shows
how.) But there is more. As there aremanysuch distributions, the market practitioner can also
choosethe distribution that fits his/her current needs best. How to makes this choice is discussed
in the next section.

5.1.1. Risk-Neutral Probabilities

Using the state pricesQi, we first obtain the so-calledrisk-neutral probabilitydistribution.
Consider the first row of the matrix equation (9).Assume that it represents the savings account.15

(1 + rt0)Q
1 + · · · + (1 + rt0)Q

n = 1 (40)

Relabel, using

p̃i = (1 + rt0)Q
i (41)

According to equation (40), we have

p̃i + · · · + p̃n = 1 (42)

where

0 < p̃i (43)

14 Again, the asset with arbitrary payoffs should depend on the same underlying risk as the options.

15 Remember thatT − t0 is assumed to be one year.
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since eachQi is positive. This implies that the numbers̃pi have the properties of a discrete
probability distribution. They are positive and they add up to one. Since they are determined
by the markets, we call them “risk-adjusted” probabilities. They are, in fact, obtained as linear
combinations ofn current asset prices. This particular set of synthetic probabilities is referred
to as therisk-neutralprobability distribution.

To be more precise, the risk-neutral probabilities{p̃i} are time-t0 probabilities on the states
that occur at timeT . Thus, if we wanted to be more exact, they would have to carry two more
subscripts,t0 andT . Yet, these will be omitted for notational convenience and assumed to be
understood by the reader.

5.1.2. Other Probabilities

Severalother synthetic probabilities can be generated, and these may turn out to be more useful
than the risk-neutral probabilities. Given the positiveQi, we can rescale these by any positive
normalizing factor so that they can be interpreted as probabilities. There are many ways to
proceed. In fact,as long as a current asset priceSkt0 is nonzeroand thezj

i are positive, one
can choose anykth row of the matrix equation in (9) to write

1 =
n∑

i=1

zi
k

Skt0

Qi (44)

and then define

zi
k

Skt0

Qi = p̃k
i (45)

Thep̃k
i , i = 1, . . . , n can be interpreted as probabilities obtained afternormalizingby theSkt0

asset. Thẽpk
i will be positive and will add up to one. Hence, they will have the characteristics

of a probability distribution, but again they cannot be used in prediction since they are not the
actual probabilities of a particular state of the worldωi occurring. Clearly, foreachnonzero
Skt0 we can obtain a new probabilitỹpk

i . These will be different across statesωi, as long as the
time-T value of the asset is positive in all states.16

It turns out thathowwe normalize a sequence of{Qi} in order to convert them into some
synthetic probability is important. The special case, where

Skt0 = B(t0, T ) (46)

B(t0, T ) being the current price of aT -maturity risk-free pure discount bond, is especially
interesting. This yields the so-calledT -forward measure. Because the discount bond matures at
timeT , the time-T values of the asset are given by

zi
k = 1 (47)

for all i.
Thus, we can simply divide state pricesQi by the current price of a default-free discount

bond maturing at timet0, and obtain theT -forward measure:

p̃T
i = Qi 1

B(t0, T )
(48)

We will see in Chapter 13 that theT -forward measure is the natural way to deal with payoffs
associated with timeT . Let’s consider an example.

16 We emphasize that we need a positive price and positive possible time-T values in order to do this.
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Example:

Suppose short-term risk-free rates are 5% and that there are four states of the world. We
observe the following arbitrage-free bid prices for four assets at timet0:

S1t0 = 2.45238, S2t0 = 1.72238, S3t0 = 6.69429, S4t0 = 3.065 (49)

It is assumed that at timeT = t0 + 1 , measured in years, the four possible values for
each asset will be given by the matrix:⎡

⎢⎢⎣
10 3 1 1
2 3 2 1
1 10 10 1
8 2 10 2

⎤
⎥⎥⎦ (50)

We can form the matrix equation and then solve for the correspondingQi:⎡
⎢⎢⎢⎢⎣

1
S1t0

S2t0

S3t0

S4t0

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

1 + .05 1 + .05 1 + .05 1 + .05
10 3 1 1
2 3 2 1
1 10 10 6
8 2 10 2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

Q1

Q2

Q3

Q4

⎤
⎥⎥⎦ (51)

Using the first four rows of this system, we solve for theQi:

Q1 = 0.1, Q2 = 0.3, Q3 = 0.07, Q4 = 0.482 (52)

Next, we obtain the risk-neutral probabilities by using

p̃i = (1 + .05)Qi (53)

which gives

p̃1 = 0.105, p̃2 = 0.315, p̃3 = 0.0735, p̃4 = 0.5065 (54)

As a final point, note that we used the first four rows of the system shown here to determine
the values ofQi. However, the price ofS4t0 is also arbitrage-free:

4∑
i=1

QiSi
4T = 3.065 (55)

as required.

Interestingly, for short-term instruments, and with “normal” short-term interest rates of
around 3 to 5%, the savings account normalization makes little difference. IfT − t0 is small,
theQi will be only marginally different from thẽpi.17

17 For example, at a 5% short rate, a 1-month discount bond will sell for approximately

B(t0, t) =
1

1 + .05 1
12

= .9958

so that dividing by this scale factor will not modify theQi very much.



5. Implications of the Fundamental Theorem 331

5.1.3. A Remark

Can derivatives be used for normalization? For example, instead of normalizing by a savings
account or by using bonds, could we normalize with a swap? The answer is no. There are
probabilities called swap measures, but the normalization that applies in these cases is not a
swap, but an annuity. Most derivatives are not usable in the normalization process because
normalization by anSkt implies, essentially, that the state pricesQi are multiplied by factors
such as

zi
k

Skt

Skt

zi
k

= 1 (56)

and then grouped according to

zi
k

Skt

Skt

zi
k

Qi =
Skt

zi
k

p̃k
i (57)

But in this operation, both thezi
k, i = 1, . . . , n and theSkt should be nonzero. Otherwise

the ratios would be undefined. This will be seen below.

5.1.4. Swap Measure

The normalizations thus far used onlyoneasset,Skt, in converting theQi into probabilitiesp̃k.
This need not be so. We can normalize using a linear combination of many assets, and sometimes
this proves very useful. This is the case for the so-called swap, or annuity, measure. The swap
measure is dealt with in Chapter 21.

5.2. Result 2: Martingale Property

The fundamental theorem of asset pricing also provides a convenient model for pricing and
risk-management purposes. Allproperly normalizedasset prices have aMartingale property
under a properly selected synthetic probabilityP̃ k. Let Xt be a stochastic process that has the
following property:

Xt = EP̃ k

t [XT ] t < T (58)

This essentially says that theXt have no predictable trend for allt. Xt is referred to as a
Martingale. To see how this can be applied to asset pricing theory, first choose the risk-neutral
probabilityP̃ as the working probability distribution.

5.2.1. Martingales under P̃

Consider anykth row in the matrix equation (9)

Skt0 = (z1
k)Q1 + (z2

k)Q2 + · · · + (zn
k )Qn (59)

Replace theQi with the risk-neutral probabilities̃pi using

Qi =
1

1 + rt0

p̃i (60)

rt0 is the interest on a risk-free one-year deposit.
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This gives

Skt0 =
1

1 + rt0

[
z1

kp̃1 + · · · + zn
k p̃n

]
(61)

Here, the right-hand side is anaverageof the future values ofSkT , weighted byp̃i. Thus,
bringing back the time subscripts, the current arbitrage-free priceSkt0 satisfies

Skt0 =
1

(1 + rt0)
EP̃

t0 [SkT ] t0 < T (62)

In general terms, letting

Xt =
Time-t value of Skt

Time-t value of the savings account
(63)

we see that asset values normalized by the savings deposit have the Martingale property:

Xt = EP̃
t [XT ] t < T (64)

Thus, all tools associated with Martingales immediately become available to the financial engi-
neer for pricing and risk management.

5.2.2. Martingales under Other Probabilities

The convenience of working with Martingales is not limited to the risk-neutral measureP̃ .
A normalization with any nonzero priceSjt will lead to another Martingale. Consider the same
kth row of the matrix equation in (9)

Skt0 = (z1
k)Q1 + · · · + (zn

k )Qn (65)

This time, replace theQi using theSjt0 , j �= k, normalization:

p̃j
i = Qi

zi
j

Sjt0

(66)

We obtain, assuming that the denominator elements are positive:

Skt0 = Sjt0

[
z1

k

1
z1

j

p̃j
1 + · · · + zn

k

1
zn

j

p̃j
n

]
(67)

this means that the ratio,

Xt =
Skt

Sjt
(68)

is a Martingale under thẽP j measure:

Xt = Ep̃j

t [XT ] t < T (69)

It is obvious that the probability associated with a particular Martingale is a function of the
normalization that is chosen, and that the implied Martingale property can be exploited in
pricing. By choosing a Martingale, the financial engineer is also choosing the probability that he
or she will beworkingwith. In the remainder of this chapter and in the next, we will see several
examples of how Martingale properties can be utilized.
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5.3. Result 3: Expected Returns

The next implication of the fundamental theorem is useful in modeling arbitrage-freedynamics
for asset prices. Every synthetic probability leads to a particularexpected returnfor the asset
prices under consideration. These expected returns willdiffer from the true (subjective) expec-
tations of players in the markets, but because they are agreed upon by all market participants and
are associated with arbitrage-free prices, they will be even more useful than the true expectations.

We conduct the discussion in terms of the risk-neutral probabilityP̃ , but our conclusions are
valid for all otherP̃ k. Consider again the Martingale property for an asset whose price is denoted
by St, but this time reintroduce the day’s adjustment parameterδ, dropping the assumption that
ti represents years. We can write, for some0 < δ,

St =
1

(1 + rtδ)
EP̃

t [St+δ] (70)

Rearrange to obtain

(1 + rtδ) = EP̃
t

[
St+δ

St

]
(71)

According to this expression, under the probabilityP̃ , expected net annual returns forall liquid
assets will equalrt, the risk-free rate observed at timet.

Similar results concerning the expected returns of the assets are obtained under other prob-
abilitiesP̃ k. The expected returns will be different under different probabilities. Market practi-
tioners can select the working probability so as to set the expected return of the asset to adesired
number.18

In Chapter 13, we will see more complicated applications of this idea using time-T forward
measures. There, the expected change in the forward rates is set equal to zero by a judicious
choice of probabilities.

5.3.1. Martingales and Risk Premia

Let us see how the use of Martingales “internalizes” the risk premia associated with nondiver-
sifiable market risks. LetXt, t ∈ [t0, T ] be a risky asset andΔ > 0 be a small time interval.
The annualizedgross returnof theXt as expected byplayersat timet, is defined by

1 + R̂tΔ = EP
t

[
Xt+Δ

Xt

]
(72)

whereP represents thereal-world probabilityused by market participants in setting up their
expectation. Since this is an actual market expectation, the gross return will contain a risk
premium:

R̂t = rt + μt (73)

wherert is the risk-free rate, andμt is therisk premiumcommanded by the risky asset.19 Putting
these together, we have

(1 + rtΔ + μtΔ) = EP
t

[
Xt+Δ

Xt

]
(74)

18 Consequently, the associated risk premium need not be estimated.

19 Underrational expectations, the subjective probabilityP is the same as the “true” distribution ofXt.
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or

Xt =
1

(1 + rtΔ + μtΔ)
EP

t [Xt+Δ] (75)

This equality states that the asset priceXt+Δ discountedby the factor(1 + rtΔ + μtΔ) is a
Martingaleonly if we use the probabilityP . Note that in this setup there aretwo unknowns:
(1) the risk premiumμt, and (2) the real-world probabilityP .20 Future cash flows accordingly
need to be discounted by subjective discount factors and real-world probabilities need to be
estimated. The pricing problem under these conditions is more complex. Financial engineers
have to determine the value of the risk premium in addition to “projecting” future earnings or
cash flows.

Now consider an alternative. Setting the (positive) risk premium equal to zero in the previous
equation gives the inequality

Xt <
1

(1 + rtΔ)
EP

t [Xt+Δ] (76)

But this is the same as risk-free savings account normalization. This means that by switching
from P to P̃ , we can restore the equality

Xt =
1

(1 + rtΔ)
EP̃

t [Xt+Δ] (77)

Thus, normalization and synthetic probabilities internalize the risk premia by converting both
unknowns into a known and objective probabilityP̃ . Equation (77) can be exploited for pricing
and risk management.

6. Arbitrage-Free Dynamics

The last result that we derive from the fundamental theorem of asset pricing is a combination of
all the corollaries discussed thus far. The synthetic probabilities and the Martingale property that
we obtained earlier can be used to derive severalarbitrage-free dynamicsfor an asset price.These
arbitrage-free dynamics play an important role in pricing situations where an exact synthetic
cannot be created, either due to differences in nonlinearities, or due to a lack of liquid constituent
assets. In fact, most of the pricing models will proceed along the lines of first obtaining arbitrage-
free dynamics, and then either simulating paths from this or obtaining the implied binomial or
trinomial trees. PDE methods also use these arbitrage-free dynamics.

6.1. Arbitrage-Free SDEs

In this section we briefly discuss the use of stochastic differential equations as a tool in financial
engineering and then show how the fundamental theorem helps in specifying explicit SDEs that
can be used in pricing and hedging in practice.21 Consider an asset priceSt. Suppose we divide
the time period [t, T ] into small intervals of equal sizeΔ. For each timet+ iΔ, i = 1, . . . , n,
we observe a differentSt+iΔ. TheSt+Δ − St is thechangein asset price at timet. Choose a
working probability from all available synthetic probabilities, and denote it byP ∗.

20 Although this latter isestimableusing econometric methods.

21 Appendix 8-2 in Chapter 8 provided the definition and some motivation for SDEs.
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Then, we can always calculate the expected value of this change under this probability. In
the case ofP ∗ = P̃ , we obtain the risk-neutral expected net return by

EP̃
t [St+Δ − St] = rtStΔ (78)

Next, note that the following statement isalwaystrue:

Actual change in St = “Expected” change + “Unexpected” change (79)

Now we can use the probability switching method and exploit the Martingale property. For
example, for the risk-neutral probability we have

[St+Δ − St] = EP̃
t [St+Δ − St] + εt (80)

where theεt represents a random variable with zero expectation under theP̃ . Replace from (78)

[St+Δ − St] = rtStΔ + εt (81)

Now the error termεt can be written in the equivalent form

εt = σ(St)StΔWt (82)

where theΔWt is a Wiener process increment with variance equal toΔ.
Thus, the arbitrage-free dynamics under theP̃ measure can be written as

[St+Δ − St] = rtStΔ + σ(St)StΔWt (83)

LettingΔ → 0, this equation becomes a stochastic differential equation (SDE), that represents
the arbitrage-free dynamics under the synthetic probability,P̃ , during an infinitesimally short
perioddt. Symbolically, the SDE is written as

dSt = rtStdt + σ(St)StdWt (84)

The dSt and dWt represent changes in the relevant variables during aninfinitesimal time
interval. Given the values for the (percentage) volatility parameter,σ(St), these equations can
be used to generate arbitrage-free trajectories for theSt. We deal with these in the next chapter.
Note a major advantage of using the risk-neutral probability. The drift term, that is to say the
first term on the right-hand side, is known. At this point we consider a second way of obtaining
arbitrage-free paths.

6.2. Tree Models

We will see another major application of the Martingale property. We develop the notion
of binomial (trinomial) trees introduced in Chapter 7 and obtain an alternative way of han-
dling arbitrage-free dynamics. Suppose the dynamics ofSt can be described by a (geometric)
SDE:

dSt = rStdt + σStdWt (85)

where the volatility is assumed to be given by

σ(St) = σ (86)
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This is the constantpercentagevolatility of St. Also note thatrt is set to a constant. It can be
shown that this stochastic differential equation can be “solved” forSt to obtain the relationship
(for example, see Øksendal (2003)).

St+Δ = Ste
rΔ− 1

2 σ2Δ+σ(Wt+Δ−Wt) (87)

Our purpose is to construct an approximation to the arbitrage-free dynamics of thisSt. We
will do this by consideringapproximationsto possible paths thatSt can follow betweent and
some “expiration” dateT . This approximation will be such thatSt will satisfy the Martingale
property under a judiciously chosen probability. Finally, the approximation should be chosen so
that asΔ → 0, the mean and the variance of the discrete approximation converge to those of
the continuous time process under the relevant probability. It turns out that this can be done in
manydifferent ways. Each method may have its advantages and disadvantages. We discuss two
different ways of building trees. AsΔ → 0, the dynamics become those of continuous time.

6.2.1. Case 1

The method introduced by Cox-Ross-Rubinstein (CRR) selects the following approximation.
First, the period[t0, T ] is divided intoN subintervals of equal length. Then, it is assumed that
at each point of a path there are possible states. In the CRR case,n = 2 and the paths become
binomial. An alternative trinomial tree is shown in Figure 11-3.
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FIGURE 11-3
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• At every nodei of a possible path, there are only two possible states represented by the
numbers{ui, di}, with the (marginal) probabilitiesp and(1 − p). The dynamics are
selected as follows:

Su
i = uiSi−Δ (88)

Sd
i = diSi−Δ (89)

whereSi is the shortcut notation forSt+iΔ.
• The{ui, di} are assumed to be constant atu, d.

We now show how to determine the Martingale probabilities. One approch is to find proba-
bilities such that underp, (1 − p):

Si = e−rΔEp̃
i [Si+Δ] (90)

or

Si = e−rΔ[pSu
i+Δ + (1 − p)Sd

i+Δ] (91)

Using the definition ofSu
i+Δ, Sd

i+Δ, in equations (88) and (89), we can write

Si = e−rΔ[pSiu + (1 − p)Sid] (92)

The mean and the variance ofSi under this probability should also be as given by the postulated
dynamics of the continuous time process in the limit.22 In other words, thep should also satisfy

EP̃
i [Si+Δ] = [pu + (1 − p)d]Si (93)

and

EP̃
i [S2

i+Δ − EP̃
i [Si+Δ]2] =

[
pu2 + (1 − p)d2]S2

i − EP̃
i [Si+Δ]2 (94)

Use

EP̃
i [Si+Δ] = Sie

rΔ (95)

EP̃
i [S2

i+Δ − EP̃
i [Si+Δ]2] = S2

i e2rΔ(eσ2Δ − 1) (96)

and get the equations
erΔ = pu + (1 − p)d (97)

e2rΔ+σ2Δ = pu2 + (1 − p)d2 (98)

Thep, u, d that satisfy these two equations will (1) satisfy the Martingale equality for allΔ,
(2) get arbitrarily close to the mean and the variance of the continuous time processSt asΔ goes
to zero, and (3) make the asymptotic distribution ofSi normal. However, there is one problem.
Note that here we have two equations and three unknowns:u, d, andp. One more equation is
needed. Choose

u =
1
d

(99)

22 Here the probabilitỹP is represented by the parameterP .
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This makes the tree recombine and completes the system of equations. Under these conditions,
the following values solve the equations

p =
erΔ − d

u − d
(100)

u = eσ
√

Δ (101)

d = e−σ
√

Δ (102)

Any approximation here is in the sense that all terms containing higher orders ofΔ are ignored.23

6.2.2. Case 2

The previous selection ofp, u, d satisfies

Si = e−rΔ[pSie
σ

√
Δ + (1 − p)Sie

−σ
√

Δ] (103)

It turns out thatp, u, d can be selected in other ways as well. In particular, note that during an
intervalΔ, theSt moves to

St+Δ = Ste
rΔ− 1

2 σ2Δ+σ[Wt+Δ−Wt] (104)

Using the approximation

Wt+Δ − Wt =

{
+

√
Δ with probability .5

−√
Δ with probability .5

(105)

we get new values forp, u, andd:

u = erΔ− 1
2 σ2Δ+σ

√
(Δ) (106)

d = erΔ− 1
2 σ2Δ−σ

√
(Δ) (107)

p = .5 (108)

These values will again satisfy the Martingale equality, the equality for the mean, and the variance
of theSi, in the same approximate sense.

7. Which Pricing Method to Choose?

In general, the choice of a pricing method depends on the following factors:

• The accuracy of pricing methods does, in general, differ. Some methods are numeri-
cally more stable than others. Some methods yield coarser approximations than others.
Precision is an important factor.

• The speed of pricing methods also changes from one method to another. In general,
everything else being the same, the faster results are preferred.

• Some methods are easier to implement. The ease of understanding a pricing method is
an important factor in its selection by practitioners.

23 This is, in fact, a standard assumption used throughout calculus. We notice that, asΔ goes to zero, the values of
p will converge to1

2 .
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• The parsimony associated with the model is also important. In general, we want our
pricing models to depend on as few parameters as possible. This way, the model has to
be calibrated to a smaller number of parameters, which means that fewer things can go
wrong. Also, a trader/broker can in general compensate for a parsimonious model by
adjusting the quotes based on trading experience.

However, in the end, the method chosen depends on the circumstances, and is a matter of
experience. What a book like this can do is to present a brief overview of the various approaches
available to the financial engineer.

8. Conclusions

We obtained some important results in this chapter. First, we showed that the notion of state
prices can be made practical in environments with liquid option prices at different strikes.
From here we showed how to obtain risk-neutral and forward measures and the corresponding
arbitrage-free dynamics.

Finally, as long as liquid option prices with different strikes exist, we showed how to replicate
an asset using a static portfolio of options. This is true for the following reasons:

1. Given the option prices, we can get the prices of elementary insurance contracts.
2. But we know that every asset can be synthetically created as a portfolio of elementary

insurance contracts.
3. This means that every asset can be created as a portfolio of liquid options.

Hence, option markets not only provide close relatives of elementary insurance contracts,
but also show us how to obtain generalized static synthetics for all assets in principle. Of course,
the practical application depends on the availability of liquid options.

Finally, we must emphasize that risk management and pricing are never as straightforward
in real life, since given the day, the number, and the type of liquid option, contracts change.

Suggested Reading

The treatment of the fundamental theorem of finance in this chapter has been heuristic and
introductory, although all important aspects of the theorem have been covered. The reader
can get more insight into the theorem by looking atDuffie (2001), which offers an excellent
treatment of asset pricing. The article byBrace et al.(1997) is an important milestone in the
use of Martingale theory, and places the right emphasis on pricing and the measure of change
that fits this chapter.Clewlow and Strickland(1998) provide several examples.



340 C H A P T E R 11. Pricing Tools in Financial Engineering

APPENDIX 11-1: Simple Economics of the Fundamental Theorem

This appendix provides a justification for the fundamental theorem from standard microeco-
nomic theory. Consider the following setup. An investor faces a decision that involves two time
periods; the time of decision, andT , the relevant future date. AtT , there are only two possible
states of the worldωi, i = 1, 2. The investor’s subjective probabilities for these arep1 andp2,
respectively.

This investor’s preferences are described by autility functionU(Xt), whereXt is total (real)
consumption at timet. Essentially, this investor is better off the higher his or her consumption:

0 <
dU

dXt
(109)

But, additional consumption would incrementally have less and less positive effect:

d2U

dX2
t

< 0 (110)

This investor would like to maximize theexpected utilityassociated with his or her current and
future consumption:

EP
t [U(Xt) + βU(XT )] = U(Xt) + β

(
p1U(X1

T ) + p2U(X2
T )

)
(111)

whereβ is a constant subjective discount factor,P is the subjective personal probability, and
X1

T andX2
T are the consumption levels in states 1 and 2 during periodT respectively. The

maximization of this function is subject to the investor’s budget constraint at timet and on the
two states of the world at timeT .

qtXt + Stht = I

q1
T X1

T = I + htS
1
T (112)

q2
T X2

T = I + htS
2
T

St is a risky asset that can be purchased at timet. It has possible valuesS1
T andS2

T at timeT .
Here theI is a known and constant income earned at timest andT . Theqt, q

1
T , andq2

T are the
corresponding prices of the consumption good. Note that, at timeT , there are two prices, one
for each state. Finally,ht is the number ofSt purchased by the investor at timet.

According to this, we are dealing with an investor who receives a constant income that needs
to be split between saving and consumption in a two-period setting. The investment can be made
only by buying a desired amount of theSt asset. The price of this asset is a random variable in
the model.

The investor is risk averse and maximizes the expected utility function. There are several
ways one can solve this maximization. Our intention is to show a simple example tomotivate
the fundamental theorem of finance. Hence, we are not concerned with the optimal consumption
itself. Rather, we would like to obtain a relationship between “current” asset priceSt and the
two possible valuesS1

T andS2
T at timeT . The fundamental theorem of asset pricing is about

these two sets of prices. Thus, we should be able to find out how the present framework can
generate the state pricesQi of the fundamental theorem.



Appendix 11-1 341

Keeping these objectives in mind, we proceed by first substituting out theXt, X
1
T , X2

T from
the equations in (112), and then differentiating the resulting expression with respect to the only
remaining choice variableht. The substitution gives

U(Xt) + β
(
p1U(X1

T ) + p2U(X2
T )

)
= U

(
I − Stht

qt

)
+ β

(
p1U

(
I + htS

1
T

q1
T

)
(113)

+ p2U

(
I + htS

2
T

q2
T

) )

Differentiating the right side with respect toht, equating to zero, and then rearranging,

U ′
(

I − Stht

qt

)(
St

qt

)
= β

(
p1U ′

(
1 + htS

1
T

q1
T

)(
S1

T

q1
T

)
(114)

+ p2U ′
(

I + htS
2
T

q2
T

)(
S2

T

q2
T

) )

where theU ′(.) is the derivative of theU(x) with respect to “x.”
Now comes the critical point. We can rearrange the first-order condition in equation (114)

to obtain

St = β

⎛
⎝p1

U ′
(

I+htS
1
T

q1
T

)
U ′

(
I−Stht

qt

) qt

q1
T

S1
T + p2

U ′
(

I+htS
2
T

q2
t

)
U ′

(
I−Stht

qt

) qt

q2
T

S2
T

⎞
⎠ (115)

Now relabel as follows:

Q1 = βp1
U ′

(
I+htS

1
T

q1
T

)
U ′

(
I−Stht

qt

) qt

q1
T

(116)

and

Q2 = βp2
U ′

(
I+htS

2
T

q2
T

)
U ′

(
I−Stht

qt

) qt

q2
T

(117)

It is clear that all elements of the right-side expressions arepositiveand, as a result, theQi,
i = 1, 2 are positive. Substituting theseQi back in equation (115), we get

St = S1
T Q1 + S2

T Q2 (118)

In other words, there is alinear relationship between current asset priceSt and the future possible
valuesS1

T andS2
T , and{Qi} is the determining factor.

An interesting implication of the derivation shown here is the following. Even when the utility
function U(.) and the subjective probabilitiespi differ among investors, general equilibrium
conditions would equate the marginal rates of substitution across these differing investors and
hence the{Qi} would be thesame. In other words, the{Qi} would be unique to all consumers
even when these consumers disagree on the expected future behavior of the economy.
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Exercises

1. The current time ist = 1 and our framework is the Libor model. We consider a situation
with four states of the worldωi at timet = 3.

SupposeLi is the Libor process with a particular tenor andB(1, 3), B(1, 4), and
B(1, 4) are zero-coupon bond prices with indicated maturities. Thepossiblepayoffs of
these instruments in the four future states of the world are as follows:

L = 6%, 6%, 4%, 4% (119)

B(1, 3) = 1, 1, 1, 1 (120)

B(1, 4) = 0.9, 0.92, 0.95, 0.96 (121)

B(1, 5) = 0.8, 0.84, 0.85, 0.88 (122)

The current prices are, respectively,

1, 0.91, 0.86, 0.77 (123)

Here the 1 is a dollar invested in Libor. It is like a savings account. Finally, current
Libor is 5%.

(a) Using Mathematica, determine a state price vectorq1, q2, q3, q4, that corre-
sponds toB(1, 3), B(1, 4), B(1, 5), L as a basis.

(b) Doesqi satisfy the required condition of positivity? Is there an arbitrage
opportunity?

(c) LetF be the1 × 2 FRA rate. Can you determine its arbitrage-free value?
(d) Now letC be an ATM caplet (i.e., the strike is 5%) that expires at timet = 2,

but settled at timet = 3 with notional amount 1. How much is it worth?

2. Suppose you are given the following data. The risk-free interest rate is 4%. The stock
price follows:

dSt = μSt + σStdWt (124)

The percentage annual volatility is 18% a year. The stock pays no dividends and the
current stock price is 100.

Using these data, you are asked to calculate the current value of a European call option
on the stock. The option has a strike price of 100 and a maturity of 200 days.

(a) Determine an appropriate time intervalΔ, such that the binomial tree has five
steps.

(b) What would be the impliedu andd?
(c) What is the implied “up” probability?
(d) Determine the binomial tree for the stock priceSt.
(e) Determine the tree for the call premiumCt.

3. Suppose the stock discussed in the previous exercise pays dividends. Assume all param-
eters are the same. Consider three forms of dividends paid by the firm:

(a) The stock pays a continuous, known stream of dividends at a rate of 4% per
time.

(b) The stock pays 5% of the value of the stock at the third node. No other divi-
dends are paid.



Exercises 343

(c) The stock pays a $5 dividend at the third node.
In each case, determine the tree for the ex-dividend stock price. For the first

two cases, determine the premium of the call.
In what way(s) will the third type of dividend payment complicate the

binomial tree?

4. We use binomial trees to value American-style options on the British pound. Assume that
the British pound is currently worth $1.40. Volatility is 20%. The current British risk-free
rate is 6% and the U.S. risk-free rate is 3%. The put option has a strike price of $1.50. It
expires in 200 days.

(a) The first issue to be settled is the role of U.S. and British interest rates. This
option is being purchased in the United States, so the relevant risk-free rate is
3%. But British pounds can be used to earn the British risk-free rate. So this
variable can be treated as a continuous rate of dividends. Or we can say that
interest rate differentials are supposed to equal the expected appreciation of the
currency.

Taking this into account, determine aΔ such that the binomial tree has five
periods.

(b) Determine the impliedu andd and the relevant probabilities.
(c) Determine the tree for the exchange rate.
(d) Determine the tree for a European put with the same characteristics.
(e) Determine the price of an American-style put with the previously stated

properties.

5. Barrier options belong to one of four main categories. They can be up-and-out, down-
and-out, up-and-in, or down-and-in. In each case, there is a specified “barrier,” and when
the underlying asset price down or up-crosses this barrier, the option either expires auto-
matically (the “out” case) or comes into life automatically (the “in” case).

Consider a European-style up-and-out call written on a stock with a current price of
100 and a volatility of 30%. The stock pays no dividends and follows a geometric price
process. The risk-free interest rate is 6% and the option matures in 200 days. The strike
price is 110. Finally, the barrier is 120. If the before-maturity stock price exceeds 120,
the option automatically expires.

(a) Determine the relevantu andd and the corresponding probability.
(b) Value a call with the same characteristics but without the barrier property.
(c) Value the up-and-out call.
(d) Which option is cheaper?


