CHAPTER 11

Pricing Tools in Financial
Engineering

Introduction

We have thus far proceeded without a discussion of asset pritidglsand the tools associated

with them, as financial engineering has many important dimensions besides pricing. In this
chapter, we will discuss models of asset pricing, albeit in a very simple context. A summary

chapter on pricing tools would unify some of the previous topics, and show the subtle connections
between them. The discussion will approach the issue using a framework that is a natural
extension of the financial engineering logic utilized thus far.

Pricing comes with at leastvo problems that seem, at first, difficult to surmount in any
satisfactory way. Investors like return, but dislike risk. This means that assets associated with
nondiversifiable risks will carryisk premia But, how can we measure such risk premia objec-
tively when buying assets is essentially a mattesutfjectivgporeferences? Modeling risk premia
usingutility functionsmay be feasible theoretically, but this is not attractive from a trader’s point
of view if hundreds of millions of dollars are involved in the process. The potential relationship
between risk premia and utility functions of players in the markets is the first unpleasant aspect
of practical pricing decisions.

The second problem follows from the first. One way or another, the pricing approach needs
to be based on measuring the volatility of future cash flows. But volatility is associated with
randomness and with some probability distribution. How can an asset pricing approach that
intends to be applicable in practice obtain a reasonable set of real-world probabBilities?

Modern finance has found an ingenious g@nalctical way of dealing with both these ques-
tions simultaneously. Instead of using a framework where risk premia are modeled explic-
itly, the professiontransformsa problem with risk premia into one where there are no risk
premia. Interestingly, this transformation is done in a way that the relevant probability dis-
tribution ceases to be theal-world probability and, instead, becomesnaarket-determined

1 Note that the subjective nature of risk premia was in the realm of pure economic theory, whereas the issue of
obtaining satisfactory real-world probability distributions falls within the domain of econometric theory.
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probability that can be numerically calculated @ty point in time if there is a reasonable
number of liquid instrument&With this approach, the assets will be priced inatificial
risk-neutral environment where the risk premia are indirectly taken into account. This method-
ology is labeled théartingale approachlt is a powerful tool in practical asset pricing and risk
management.

A newcomer to financial engineering may find it hard to believe that a more or less unified
theory for pricing financial assets that can be successfully applied in real-world pricing actually
exists. After all, there are many different types of assets, and not all of them seem amenable to
the same pricing methodology, even at a theoretical level. A market practitioner may already
have heard of risk-neutral pricing, but just like the newcomer to financial engineering, he or she
may regard the basic theory behind it as vaiogtract And yet, the theory is surprisingly potent.

This chapter provides a discussion of this methodology from the point of view of a financial
engineer. Hence, even though the topic is asset pricing, the way we approach itis based on ideas
developed in previous chapters. Basically, this pricing methodology is presented as a general
approach to synthetic asset creation.

Of course, like any other theory, this methodology depends on some strict assumptions. The
methods used in this text will uniformly make one common assumption that needs to be pointed
out at the start. Only those models that asswomplete marketare discussed. In heuristic
terms, when markets are “complete,” there are “enough” liquid instruments for obtaining the
working probability distribution.

This chapter progressively introduces a number of important theoretical results that are used
in pricing, hedging, and risk management application. Maénresult is called the fundamen-
tal theorem of asset pricing. Instead of a mathematical proof, we @isarzial engineering
argumentto justify it, and a number of important consequences will emerge. Throughout the
chapter, we will single out the results that have practical implications.

Summary of Pricing Approaches

In this section we remind the reader of some important issues from earlier chapters. Suppose we
want to find thefair market price of an instrument. First, we construct a synthetic equivalent to
this instrument using liquid contracts that trade in financial markets. Clearly, this requires that
such contracts are indeed available. Second, once these liquid contracts are found, an arbitrage
argument is used. The cost of theplicating portfolioshould equal the cost of the instrument

we are trying to price. Third, a trader would add a proper margin to this cost and thus obtain the
fair price.

In earlier chapters, we obtained synthetics for forward rate agreements (FRASs), foreign-
exchange (FX) forwards, and several other quasi-linear instruments. Each of these constitutes
an early example of asset pricing. Obtain the synthetic and see how much it costs. By adding a
profit to this cost, the fair market price is obtained. It turns out that weegtandhis practical
approach and obtain a general theory.

It should be reemphasized thaticing and hedgingefforts can sometimes be regarded as
two sides of the same coin. In fact, hedging a product requires finding a replicating portfolio
and then using it to cover the position in the original asset. If the trader is long in the original
instrument, he or she would be short in the synthetic, and vice versa. This way, exposures to risks
would cancel out and the position would become “riskless.” This process results in the creation
of a replicating portfolio whose cost cannot be that different from the price of the original asset.

2 That is to say, instead of using historical data, we can derive the desired probability distribution from the current
quotes.
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Thus, a hedge will transfer unwanted risks to other parties but, at the same time, will provide a
way to price the original assét.

Pricing theory is also useful for the creation of “new products.” A new product is basically
a series of contingent cash flows. We would, first, put together a combination of financial
instruments that have the same cash flows. Then, we would write a separate contract and sell
these cash flows to others undenew nameFor example, a strip of FRAs or futures can be
purchased and resulting cash flows are then labeled a swap and sold to others. The new product
is, in fact, a dynamically maintained portfolio of existing instruments, and its fair cost will equal
the sum of the price of its constituents.

The Framework

The pricing framework that we use emphasizes important aspects of the theory within a real-
world setting. We assume that liquid asset prices are observed at timgs = 1,2. . . .

The timet; price of thekth asset is denoted b¥y.,. The latter can represent credit, stocks,
fixed-income instruments, the corresponding derivatives, or commodity prices.

Intheory, atypicaby;, can assume any real value. This makes the number of possible values
infinite anduncountable But in practice, every price is quoted to a small number of decimal
places and, hence, has a countable number of possible future values. Foreign exchange rates,
for example, are in general quoted to four decimal places. This brings us to the next important
notion that we would like to introduce.

States of the World

Letty denote the “present,” and consider #ik asset pricé 1, at a future datel’ = ¢;, for some

0 < 4. At time to, the S, will be a random variablé.Let the symbols’, with j =1, . . . n
represent timéF states of the worldhat relate to the random variabf ;.5 We assume that

n < m, which amounts to saying that there are at least as many liquid assets as there dfe time-
states of the world. For example, itis common practice in financial markets to assume a “bullish”
state, a “bearish” state, and a “no-change” state. Traders expect prices in the future to be either
“higher,” “lower,” or to “remain the same.” The’ generalizes this characterization, and makes

it operational.

EXAMPLE:

In this example, we construct the states of the world that relate to some asset whose time
t; price is denoted by;,. Without any loss of generality, let

Sy, =100 1)

Suppose, at a future dafe, with ¢,, = T', there are onlyn = / states of the world. We
consider the task of defining these states.

3 Ifthe hedge is not “perfect,” the market maker will add another margin to the cost to account for any small deviation
in the sensitivities toward the underlying risks. For example, if some exotic option cannot be perfectly hedged by the
spot and the cash, then the market maker will increase or decrease the price to take into account these imperfections.

4 The current value of the ass8f,,, on the other hand, is known.

5 According to thisw? may also need @ subscript. But we ignore it and ask the reader to remember this point.
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3.2.

1. Setthe value of some grid paramefes to assign neighboring values 8f- into
a single state. For example, let

AS =2 )

2. Next, pick two upper and lower boundg™®, S™ax] such that the probability
of St being outside this interval is relatively small and that excursions outside
this range can safely be ignored. For example 48¢* = 104 and S™" = 96.
Accordingly, the events0/, < St and Sy < 96 are considered unlikely to
occur, and, hence, a detailed breakdown of these states of the world is not needed.
Clearly, the choice of numerical values fg™®, S™ax] depends, among other
things, on the perceived volatility & during the periodt,, 7].%

3. The states of the world can then be defined in the following fashion:

w! = {Sr such that Sy < S™"} (3)
w? = {Sr such that Sy € [S™™", S™" + AS]} (4)
w? = {St such that Sy € [S™" + AS, S™" 4 2AS = S™x]} (5)
w* = {Sr such that S™ < Sp} (6)

This situation is shown in Figure 11-1.

Here, the total number of states of the world depends on the size of the grid parameter
AS, and on the choice of upper and lower boun8g®, Smax], These, in turn, depend on
market psychology at timé,. For example, selecting the total number of states as 4
could be justified, if the ranges f&; shown here were the only ones found relevant for
pricing and risk-management problems faced during that particular day. If a problem under
consideration requiresfaeror coarsersubdivision of the future, the value faerwould change
accordingly.

The Payoff Matrix

The next step in obtaining the fundamental theorem of asset pricing is the definition of a payoff
matrix for periodZ’. Time-I values of the assetS},;, depend on the state of the worldf, that
will occur at timeT". Given that we are working with a finite number of states of the world,

wl=(S< sMin) 3= (SMN+ AS=S5< SN+ 2AS)

l l

w2=(Smi”sS<Smi”+AS) w4=(SmaXSS)

FIGURE 11-1

6 In practice, these upper and lower bounds have to be progaityratedto observed liquid, arbitrage-free prices.
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possible valuefor these assets would be easy to list. Letepresent the value assumed by the
kth asset in state?, at timed":

Sty =4 (7

Then, for the firsth assetsp < m, we can form the following payoff matrix for timeé":

D= (8)

A typical row of this matrix would represent possible values giaticular assetin different
states of the world. A typical column represents different asset pricepartiaular state of the
world. The definition ofw? should automatically lead to a definition of the possible values for
assets under consideration, as shown in the previous example.

The fundamental theorem of asset pricing is about how “current” asset pfigeselate
to the possible values represented by mafvixWe form a matrix equation that will play an
important role in the next three chapters.

The Fundamental Theorem

Consider thdinear system of equations defined for a serie€0f indexed by the state of the
world i:

1
Slto Zl A

=3

Ql
Qn

9)

1
Snto Z'VL e ez

S3

The left-hand side shows the vector of current liquid asset prices observed &§.tithe right-
hand side has two components. The first is the mdiriaf possible values for these prices at
time T, and the second is a vector of constagg!, . . . ,@"}. The fundamental theorem of
asset pricing concerns this matrix equation and the properties ¢the The theorem can be
stated heuristically as follows:

Theorem The timel, prices for the{ Sy, } are arbitrage-free if and only if Q?} exist
and are positive.

Thus, the theorem actually works both waysSif, are arbitrage-free, thef’ exist and are all
positive. IfQ? exist and are positive, then ti$,, are arbitrage-free.

The fundamental theorem of asset pricing providesified pricing tool for pricing real-
world assets. In the remaining part of this chapter, we derive important implications of this
theorem. These can be regardedcasollaries that are exploited routinely in asset pricing.
The first of these corollaries is the existencesghtheticprobabilities. However, before we
discuss these results we need to motivate{tf¥¢} and show why the theorem holds.

Definition of an Arbitrage Opportunity

What is meant by arbitrage-free prices? To answer this question we need toatbfinege
opportunityformally. Formal definition of the framework outlined in this section provides this.
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Consider the asset pricfs;, . . . , Sk:. Associate the portfolio weights with assetS;;. Then
we say that there is an arbitrage opportunity if either of the following two conditions hold.

1. Aportfolio with weightsf; can be found such that:

k
i=1
simultaneously with
k
0< Z 0;S:T (11)
=1

According to these conditions, the market practitioner advances no cash atdificem
the portfolio, but still has access to some non-zero gains atfinieis is the first type
of arbitrage opportunity.

2. Aportfolio with weightsf; can be found such that:

k
> 054 <0 (12)
i=1
simultaneously with
k
> 0:Sir =0 (13)
i=1

In this case the market practitioner receives cash at timbile forming the portfolio,
but has no liabilities at timé&".

Itis clear that in either case, the size of thadaitrage portfoliosis arbitrary since no liabilities
are incurred. The formal definition of arbitrage-free prices requires that such portfolios not be
feasible at the “current” priceS;; }.

Notice that what market professionals callabitrage strategyis very different from this
formal definition of arbitrage opportunity. In general, when practitioners talk about “arb” they
mean positions that have a relatively small probability of losing money. Clearly this violates
both of the conditions mentioned above. The methods introduced in this chapter deal with the
lack of formal arbitrage opportunities and not with the market practitioners’ arbitrage strategies.
It should be remembered that it is the formal no-arbitrage condition that provides the important
tools used in pricing and risk-management.

Interpreting the Q?: State Prices

Given the states of the world’, i = 1, . . . ,n, we can write the preceding matrix equation
for the special caseof two important sets of instruments that are essential to understanding
arbitrage-free pricing. Suppose the first asSgtis arisk-free savings depos#account and
assume, without any loss of generality, thatepresents yearsif 1 dollar is deposited at time

to, (1 +7,) can be earned at timig without any risk ofdefault Ther,, is the rate that is
observed as of timg,.

7 This simplifies the notation, since the days’ adjustment parameter will equal one.
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The second set of instruments alementary insurance contraci/e denote them by’;.
These contracts are defined in the following way:

e () pays $1 attimd’ if w' occurs. Otherwise it pays zero.

e (), pays $1 at timd’ if w™ occurs. Otherwise it pays zero.

If a market practitioner considers stateas “risky,” he or she can buy a desired numbef'gé
as insurance tguaranteeany needed cash flow in that state.

Suppose now that all; are actively traded at timg. Then, according to the matrix equation,
the correct arbitrage-free prices of these contracts are give.&his is the case since plugging
the current prices of the savings account andthat timet, into the matrix equation (9) givés

1] Jm) - ()] o
Cy 1 0 - 0 .

(14)

. e . - DY .. ... DRI 'n.
Cy 0 . 0 1 @
Following from this matrix equation, th@’ have three important properties. First, we see that
they areequalto the prices of the elementary insurance contracts:
Ci=@Q' (15)

It is for this reason that th€’ are also calledtate pricesSecond, we can show that if interest
rates are positive, the sum of the timhgprices ofC; is less than oneConsider the following:

A portfolio that consists of buyingne of eachinsurance contracef; at timet, will guarantee

1 dollar at timety no matter which statey?, is realized at tim&'. But, a guaranteed future dollar
should be wortHessthan a current dollar at hand, as long as interest rates are positive. This
means that the sum 6}° paid for the elementary contracts at timgeshould satisfy

Q1+Q2+...+Q"<1 (16)

From the first row of the matrix equation in (14) we can write

Y Qi+ =1 (17)
=1
After rearranging,
1 2 n 1
+ Lo+ = — 18
Q'+Q Q=T (18)

The third property is a little harder to see. As the fundamental theorem states, none of the
Q' can benegativeor zero if theC; are indeedarbitrage-free We show this with a simple
counter-example.

EXAMPLE:

Suppose we have= 4 and that the first elementary contract has a negative price,
C1 = —1. Without any loss of generality, suppose all other elementary insurance con-
tracts have a positive price. Then the portfolio

{(Q%* + @ + @*) unit of C1, 1 unit of Cy, 1 unit of Cs, 1 unit of C4,}  (19)

8 Din our setup is dn 4 1)zn matrix.
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has zero cost at timg, and yet will guarantee a positive return at tihe More precisely,
the portfolio returns 1 dollar in states 2 to 4 af@? + Q3 + Q*) dollars in state 1.

Hence, as long as one or more of ) are negative, there will always be an arbitrage
opportunity. Atrader can “buy” the contract(s) with a negative price and use the cash generated
to purchase the other contracts. This way, a positive retufigtjuaranteedwhile at the same
time the zero-cost structure of the initial portfolio is maintained. For such arbitrage opportunities
not to exist, we need < Q° for all i.

3.5.1. Remarks

Before going further, we ask two questions that may have already troubled the reader given the
financial engineering approach we adopted in this book.

e Do insurance contracts such@sexist in the real world? Are they actively traded?
e Isthe assumption of a smdithite number of states of the world realistic? How can such
a restrictive view of the future be useful in pricing real-world instruments?

In the next few sections we will show that the answer to both of these questions is a qualified
yes. To understand this, we need to relate the elementary insurance contracts to the concept of
options. Options can be considered as ways of trading baskétsoA typical C; pays 1 dollar
if statei occurs and nothing in all other states. Thus, it is clear that option payoffs at expiration
are different from those of elementary contracts. Options pay nothing if they expire out-of-the-
money, but they pay,St — K) if they expire in-the-money. This means that depending on how
we define the states’, unlike the elementary contracts, options can make paymemmia
than one state. But this difference is really not that important since we can get all d€sired
from option prices, if options trade for all strikés. In other words, the pricing framework that
we are discussing here will be much more useful in practice than it seems at first.

As to the second question, it has to be said that, in practice, few strikes of an option series
trade actively. This suggests that the finite state assumption may not be that unrealistic after all.

An Application

The framework based on state prices and elementary insurance contracts is a surprisingly potent
andrealistic pricing tool. Before going any further and obtaining more results from the fun-
damental theorem of asset pricing, we prefer to provide a real-world example. The following
reading deals with the S&P500 index and its associated options.

EXAMPLE:

The S&P500 is an index of 500 leading stocks from the United States. It is closely
monitored by market participants and traded in futures markets. One can buy and sell
liquid options written on the S&P500 at the Chicago Board of Options Exchange (CBOE).
These options, with an expiration date of December 2001 are shown in Table 11-1 as
they were quoted on August 10, 2001.

At the time these data were gathered, the index was at 1187. The three most liquid call
options are

{1275—Call, 1200—Call, 1350—Call} (20)
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TABLE 11-1
Calls Last sale Bid Ask Volume Open interest
Dec 1175 67.1 68 70 51 1378
Dec 1200 46.5 52.8 54.8 150 8570
Dec 1225 41 40.3 42.3 1 6792
Dec 1250 28.5 29.6 31.6 0 11873
Dec 1275 22.8 21.3 23.3 201 6979
Dec 1300 15.8 15 16.2 34 16362
Dec 1325 9.5 10 11 0 9281
Dec 1350 6.8 6.3 7.3 125 8916
Dec 1375 4.1 4 4.7 0 2818
Dec 1400 2.5 2.5 3.2 10 17730
Dec 1425 1.4 1.4 1.85 0 4464
Dec 1450 0.9 0.8 1.25 9 9383
Dec 1475 0.5 0.35 0.8 0 122
Puts Last sale Bid Ask Volume Open interest
Dec 800 1.65 1.2 1.65 10 1214
Dec 900 4.3 3.4 4.1 24 11449
Dec 950 5.4 5.3 6.3 10 8349
Dec 995 10.1 8.5 9.5 0 11836
Dec 1025 13 11.1 12.6 11 5614
Dec 1050 13.6 14 15.5 106 19483
Dec 1060 16.5 15.7 17.2 1 1597
Dec 1075 22.5 18 19.5 1 316
Dec 1100 26 22.7 24.7 0 17947
Dec 1150 39 35.3 37.3 2 16587
Dec 1175 44 44.1 46.1 14 4897
Dec 1200 53 53.9 55.9 897 26949

The three most liquid put options, on the other hand, are

{1200— Put, 1050— Put, 900— Put} (21)

Not surprisingly, all the liquid options are out-of-the-money as liquid options generally
are?

We will now show how this information can be used to obtain (1)the states of the wérld
(2) the state price§?, and (3) the corresponding synthetic probabilities associated wit)'the
We will do this in the simple setting used thus far.

Obtaining the w*

A financial engineer always operates in response to a particular kind of problem and the states
of the world to be defined relative to the needsthat time In our present example we are
working with S&P500 options, which means that the focus is on equity markets. Hence, the
corresponding states of the world would relate to different states in which the U.S. stock market

9 Buying and selling in-the-money options does not make much sense for market professionals. Practitioners carry
these options by borrowing the necessary funds and hedge them immediately. Hence, any intrinsic value is offset by the
hedge side anyway. Yet, the convexity of in-the-money options will be the same as with those that are out-of-the-money.
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might be at a future date. Also, we need to take into account that trader behavior singles out
a relatively small number diquid options with expirations of about three months. For the
following example refer back to Table 11-1.

EXAMPLE:

We letSt represent the value of the S&P500 at expiration and then use the strike prices
K; of the liquid options to define the future states of the world. In fact, strike prices of puts
and calls discussed in the preceding example divideésth@xis into intervals of equal
length. But only a handful of these options are liquid, implying that fine subdivisions
were perhaps not needed by the markets for that day and that particular expiration.
Accordingly, we can use the strike prices of the three liquid out-of-the-money puts to
obtain the intervals

wl = 87 < 900 (22)
w? =900 < S < 1050 (23)
w3 = 1050 < Sy < 1200 (24)

Note that the liquid puts lead to intervals of equal length. It is interesting, but also
expected, that the liquid options have this kind of regularity in their strikes. Next, we use
the three out-of-the-money calls to get three intervals to define three additional states of

the world as
w* =1200 < Sp < 1275 (25)
w® = 1275 < S < 1350 (26)
w® =1350 < Sy (27)

Here, the last interval is obtained from the highest-strike liquid call option. Figure 11-2
shows these options and the implied intervals. Since these intervals relate to future values
of St, we consider them the relevant states of the worldSfer

We pick the midpoint of the bounded intervals as an approximation to that particular
state. Let these midpoints be denoted(y, i = 2, . . . , 5}. These midpoints can
then be used as a finite set of points that represénfor the first and last half-open
intervals, we select the values of the two extreme paffitsand S, arbitrarily for the

time being. We let

St =750 (28)
56 = 1400 (29)

so that the distance betweéh remains constant. This arbitrary selection of the “end
states” is clearly unsatisfactory. In fact, by doing this we are in a sense setting the
volatility of the random variables arbitrarily. We can, however calibrate our selection.
Once our educated guesses are plugged in, we can try to adjust these extreme values so
that the resultingl? all become positive and price some other liquid asset correctly. In

a sense, calibration is an attempt to see which value of the two “end states” replicates
the observed prices. But for the time being, we ignore this issue and assume that the end
points are selected correctly.

Itis open to debate if selecting just six states of the world, as in the example, might represent
future possibilities concerningj; accurately. Traders dealing with the risk in the example must
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Payoffs in
state 2

Payoff in
state 3

S
Ko Ky Ks Ke
900 1050 1200 1275 1350
QOut-of-the-money puts Qut-of-the-money calls
\ ~ J \_v_/ %,_J ;‘(—} %,_J ~ ~ J
State 1 Stale2 Stale3  State 4 State S State 6
FIGURE 11-2

have thought so, since on that particular date trading approximsiteljquid options was
sufficient to resolve their tasks. It seems thatfihier subdivision of the future possibilities were
more appropriate, then more liquid strikes would have been traded.

Hence, as usual in financial engineering, the specific valued tfat we select are based
on the values of liquid instruments. In our case, the possible states of the world were chosen as
dictated by liquid call and put options.

Elementary Contracts and Options

Elementary insurance contracts do not trade directly in world financial markets. Yet, the

C; are not far from a well-known instrument class—options—and they trade “indirectly.”
This section shows how elementary insurance contracts can be obtained from options, and
vice versa. Plain vanilla options are, in fact, close relatives of elementary insurance con-
tracts. The best way to see this is to consider a numerical example. (Generalizations are
straightforward.)

EXAMPLE:

Start with the first and the last options selected for the previous example. Note that the
900-put is equivalent td{; — S* units of C; because it pays approximately this many
dollars if statew; occurs and nothing in all other states. Similarly, the 1350-call is
equivalent taS® — K units of Cs because it pays approximately this many dollars if
state 6 occurs and nothing otherwise.

The other calls and puts have payoffs in more than one state, but they also relate to
elementary contracts in straightforward ways. For example, the 1050-put is equivalent
to a portfolio of two elementary insurance contradis, — S* units ofC; and Ky — S?

units ofC'y, because it makes these payments in states 1 and 2, respectively, and nothing
else in other states. In fact, pursuing this reasoning, we can obtain the following matrix
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equation between the payoffs of elementary contrégts. . . ,Cs and the option
prices:

900-Put 220 0 0 0 0] [Cy

1050-Put 22220 0 0 0 |Cy

1200-Put | |24 232 23 0 0 0] |Cs (30)

1200-Call| — |0 0 0 zf 2§ 2§| |C4

1275-Call 0 0 0 0 22 28 |Cs

1350-Call 00 0 0 0 28 |Cs
This equation holds since we have

Q' =C; (31)

for all i.10

Thus, given the arbitrage-free values of traded puts and calls with different strikes but similar
in every other aspect, we can easily obtain the values of the elementary insurance céhtracts
by inverting the(6 x 6) matrix on the right side. In fact, it is interesting to see that the matrix
equation in the example contains two triangular subsystems that can be solved separately and
recursively.

Hence, the existence of liquid options makes a direct application of the fundamental theorem
of asset pricing possible. Given a large enough number of liquid option contracts, we can obtain
the state pricesy’, if these exist, and, if they are all positive, use them to price other illiquid
assets that depend on the same HgBbviously, when traders deal with interest rate, or exchange
rate risk, or when they are interested in pricing contracts on commodities, they would use
liquid options forthoseparticular sectors and work with different definitions of the state of the
world.

Elementary Contracts and Replication

We now show how elementary insurance contracts and options that belong to a series can be used
in replicating instruments witarbitrary payoffs. Consider an arbitrary financial ass#t,that

is worth 2% in state of the worldv?, i = 1, . . . ,n, attimeT. Givenn elementary insurance
contracty;, we can immediately form eeplicating portfoliofor this asset. Assuming, without

any loss of generality, that the tin-payoffs of theS, asset are denoted loy< 2%, we can
consider buying the following portfolio:

{2} units of Cy, 2% units of Cy, . . . , 2% units of C,,} (32)

Attime T, this portfolio should be worth exactly the same as$hesince whatever state occurs,
the basket of insurance contracts will make the same fihpayoff as the original asset. This
provides an immediatgynthetidfor the S;. Accordingly, if there are no arbitrage opportunities,
the value of the portfolio and the value of tiS¢ will be identical as of timeg as well*? We
consider an example.

10 |f one needs to get the values@f from the traded puts and calls, one should start with the first put, then move
to the second put, then the third. The same strategy can be repeated with the last call and so on.

11 Here, this risk is the S&P500 index.

12 As usual, it is assumed that tiSe makes no other interim payouts.
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EXAMPLE:
Take any four independent asssis, k = 1, . . . , 4 with different payoffs;}, in the
states{w’,i = 1, . .. ,4}. We can express each one of these assets in terms of the

elementary insurance contracts. In other words, we can find one synthetic foSgach
by purchasing the portfolios:

{2} unit of C1, 2% unit of Cy, 2 unit of C3, z; unit of Cy} (33)

Putting these in matrix form, we see that arbitrage-free vali$gs,, of these assets at
timet, have to satisfy the matrix equation:

1 1 —|— ’I“to 1 + Tt() 1 —|— ’I"to 1 + Tto Ql

N I R

S2t0 - ,Z% Z% Z% 23 QS (34)
S3t0 Z; Zg Z§ Z§ Q4

St 2} 23 23 23

where the matrix on the right-hand side contains all possible values of the &&gets
states.’, at time T3

Hence, given the prices of actively traded elementary contta@gtae can easily calculate
the time# cost of forming the portfolio:

Cost = Cizh + Coz2 4+ - - - + Cp2t (35)

This can be regarded as the cost basis forthasset. Adding a proper margin to it will give
the fair market prices;.

EXAMPLE:

Suppose th§;-asset has the following payoffs in the states of the wiogdl, . . . | 4:
{24 =10,2% = 1,27 = 14, 2% = 16} (36)

Then, buying 10 units of the first insurance contr@gtwill guarantee the 10 in the first
state, and so on.

Suppose we observe the following prices for the elementary insurance contracts:
C1=.3,0,=.2,C3=.4,Cy =.07 (37)
Then the total cost of the insurance contracts purchased will be

Cost = (.3)10 + (.2)(1) + (.4)14 + (.07)16 (38)
=9.92 (39)

This should equal the current price §f once a proper profit margin is added.

13 For notational simplicity, we eliminated time subscripts in the matrix equation. Also remember that the time index
represents, years and th@t = Q°.
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Clearly, if such elementary insurance contracts actively traded in financial markets, the job
of a financial engineer would be greatly simplified. It would be straightforward to construct
synthetics forany asset, and then price them using the cost of the replicating portfolios as
shown in the example. However, there is a close connection betWesmmd options of the same
series that differ only in their strikes. We saw how to obtain@hdrom liquid option prices.
Accordingly, if options with a broad array of strikes trade in financial markets, then traders can
createstaticreplicating portfolios for assets with arbitrary payoffs.

5. Implications of the Fundamental Theorem

The fundamental theorem of asset pricing has a number of implications that play a critical role in
financial engineering and derivatives pricing. First, using this theorem we can obtain probability
distributions that can be used in asset pricing. These probability distributions will be objective
and operational. Second, the theorem leads to the so-called Martingale representation of asset
prices. Such a representation is useful in modeling asset price dynamics. Third, we will see that
the Martingale representation can serve to objectively set expected asset returns. This property
eliminates the need to model and estimate the “drift factors” in asset price dynamics. We will
now study these issues in more detail.

5.1. Result 1: Risk-Adjusted Probabilities

The @’ introduced in the previous section can be modified judiciously in order to obtain con-
venient probability distributions that the financial engineer can work with. These distributions
donotprovide real-world odds on the states of the wasldand hence cannot be used directly

in econometric prediction. Yet thejo yield correct arbitrage-free prices. (This section shows
how.) But there is more. As there amanysuch distributions, the market practitioner can also
choosehe distribution that fits his/her current needs best. How to makes this choice is discussed
in the next section.

5.1.1. Risk-Neutral Probabilities

Using the state price®’, we first obtain the so-calledsk-neutral probabilitydistribution.
Consider the first row of the matrix equation (9). Assume that it represents the savings @écount.

(1+74)Q" + -+ - +(1+7)Q" =1 (40)
Relabel, using
Pi = (14 74,)Q’ (41)
According to equation (40), we have
Bit o =1 (42)
where

0 <pi (43)

14 Again, the asset with arbitrary payoffs should depend on the same underlying risk as the options.

15 Remember thal” — tq is assumed to be one year.
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since each)’ is positive. This implies that the numbeps have the properties of a discrete
probability distribution They are positive and they add up to one. Since they are determined
by the markets, we call them “risk-adjusted” probabilities. They are, in fact, obtained as linear
combinations of: current asset prices. This particular set of synthetic probabilities is referred
to as therisk-neutralprobability distribution.

To be more precise, the risk-neutral probabiliigs} are time#, probabilities on the states
that occur at timé". Thus, if we wanted to be more exact, they would have to carry two more
subscriptsty andT'. Yet, these will be omitted for notational convenience and assumed to be
understood by the reader.

5.1.2. Other Probabilities

Severabther synthetic probabilities can be generated, and these may turn out to be more useful
than the risk-neutral probabilities. Given the posit{yg we can rescale these by any positive
normalizing factor so that they can be interpreted as probabilities. There are many ways to
proceed. In factas long as a current asset pric#,, is nonzeroand thez] are positive one

can choose ankth row of the matrix equation in (9) to write

1=) *Q 44
; 5. @ (44)
and then define
2 ik
= 5 45
SktoQ j2 (45)
Thept,i =1, . .. ,ncanbeinterpreted as probabilities obtained afeemalizingby theSj,

asset. The* will be positive and will add up to one. Hence, they will have the characteristics
of a probability distribution, but again they cannot be used in prediction since they are not the
actual probabilities of a particular state of the waxltloccurring. Clearly, forachnonzero
Skt, We can obtain a new probabiliﬁf. These will be different across state§ as long as the
time-T" value of the asset is positive in all statés.

It turns out thahowwe normalize a sequence £f)*} in order to convert them into some
synthetic probability is important. The special case, where

Skt, = B(to, T) (46)

B(to,T) being the current price of @-maturity risk-free pure discount bond, is especially
interesting. This yields the so-call@dforward measureBecause the discount bond matures at
time T, the timeq" values of the asset are given by

zi =1 (47)

for all 4.
Thus, we can simply divide state pric€s by the current price of a default-free discount
bond maturing at timey, and obtain th&’-forward measure:
. 1
~T 7
L =Q' = 48
pi =Q'5 (o, T) (48)
We will see in Chapter 13 that tHE-forward measure is the natural way to deal with payoffs
associated with timé&’. Let's consider an example.

16 We emphasize that we need a positive price and positive possibléltivadues in order to do this.
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EXAMPLE:

Suppose short-term risk-free rates are 5% and that there are four states of the world. We
observe the following arbitrage-free bid prices for four assets at tigne

Sy, = 2.45238, Sy, = 1.72238, Sy, = 6.69429, Sy, = 3.065 (49)

It is assumed that at timé& = ¢, + 1, measured in years, the four possible values for
each asset will be given by the matrix:

10 3 1 1
2 3 2 1
1 10 10 1 (50)
8 2 10 2
We can form the matrix equation and then solve for the correspor@ing
1 1+.05 14+.05 1+.05 1+4.05 o
St 10 3 1 1 O
Sor, | =1 2 3 2 1 0? (51)
Sst, 1 10 10 6 0
Sty 8 2 10 2
Using the first four rows of this system, we solve for@ie
Q' =0.1,Q°=0.3,Q% = 0.07, Q* = 0.482 (52)
Next, we obtain the risk-neutral probabilities by using
pi=(1+.05)Q" (53)
which gives
p1 = 0.105, p2 = 0.315, p3 = 0.0735, p4 = 0.5065 (54)

As afinal point, note that we used the first four rows of the system shown here to determine
the values of)’. However, the price ofy;, is also arbitrage-free:

4
> Q'Siy =3.065 (55)

i=1
as required.
Interestingly, for short-term instruments, and with “normal” short-term interest rates of

around 3 to 5%, the savings account normalization makes little differen€e--1t, is small
the Q" will be only marginally different from the;.1’

17 For example, at a 5% short rate, a 1-month discount bond will sell for approximately

1
B(to,t) = ——— = .9958

140555

so that dividing by this scale factor will not modify tiig¢ very much.
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5.1.3. A Remark

Can derivatives be used for normalization? For example, instead of normalizing by a savings
account or by using bonds, could we normalize with a swap? The answer is no. There are
probabilities called swap measures, but the normalization that applies in these cases is not a
swap, but an annuity. Most derivatives are not usable in the normalization process because
normalization by arfy; implies, essentially, that the state pric@sare multiplied by factors

such as

Z]Zf Skt
£ =1 56
S 7 (56)
and then grouped according to
2 S e Sy (57)
kt Zp 2L
But in this operation, both thel, i = 1, . . . ,n and theSj; should be nonzero. Otherwise

the ratios would be undefined. This will be seen below.

5.1.4. Swap Measure

The normalizations thus far used omlgeasset Sy, in converting the&)’ into probabilitiess”.

This need not be so. We can normalize using a linear combination of many assets, and sometimes
this proves very useful. This is the case for the so-called swap, or annuity, measure. The swap
measure is dealt with in Chapter 21.

Result 2: Martingale Property

The fundamental theorem of asset pricing also provides a convenient model for pricing and
risk-management purposes. Altoperly normalizedasset prices have Martingale property
under a properly selected synthetic probabilit§. Let X, be a stochastic process that has the
following property:

X, =E(X7] t<T (58)

This essentially says that th&, have no predictable trend for al X, is referred to as a
Martingale. To see how this can be applied to asset pricing theory, first choose the risk-neutral
probability P as the working probability distribution.

5.2.1. Martingales under P
Consider anyth row in the matrix equation (9)

Skte = (21)Q" + (2)Q* + - - - + (z7)Q" (59)
Replace th&)? with the risk-neutral probabilitieg; using

. 1
L 60
Q 1+Tt0p, (60)

4, IS the interest on a risk-free one-year deposit.
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This gives
S A (61)
Here, the right-hand side is averageof the future values o), weighted byp;. Thus,

bringing back the time subscripts, the current arbitrage-free Shigesatisfies

1

Skto = (1 +rt0)

ElISwr]  to<T (62)

In general terms, letting

X Time-t value of S}

(63)

*~ Time-t value of the savings account
we see that asset values normalized by the savings deposit have the Martingale property:
X, =EP[X7] t<T (64)

Thus, all tools associated with Martingales immediately become available to the financial engi-
neer for pricing and risk management.

5.2.2. Martingales under Other Probabilities

The convenience of working with Martingales is not limited to the risk-neutral meaBure
A normalization with any nonzero pricg;; will lead to another Martingale. Consider the same
kth row of the matrix equation in (9)

Skto = (2)Q" + - -+ + (z1)Q" (65)
This time, replace th€)’ using theS;;,, j # k, normalization:

%

P=Q (66)
‘ Sjto
We obtain, assuming that the denominator elements are positive:
1 1 ~j n 1 =]
Skte = Sjto |Ze—gP1+ + + - + 2L D) (67)
Zj Zj
this means that the ratio,
Skt
Xy = — (68)
t Sjt
is a Martingale under th&/ measure:
X, =EV[Xy] t<T (69)

It is obvious that the probability associated with a particular Martingale is a function of the
normalization that is chosen, and that the implied Martingale property can be exploited in
pricing. By choosing a Martingale, the financial engineer is also choosing the probability that he
or she will beworkingwith. In the remainder of this chapter and in the next, we will see several
examples of how Martingale properties can be utilized.
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Result 3: Expected Returns

The next implication of the fundamental theorem is useful in modeling arbitragehfreamics

for asset prices. Every synthetic probability leads to a parti@kpected returtior the asset

prices under consideration. These expected returngliffér from the true (subjective) expec-

tations of players in the markets, but because they are agreed upon by all market participants and

are associated with arbitrage-free prices, they will be even more useful than the true expectations.
We conduct the discussion in terms of the risk-neutral probalifljtlyut our conclusions are

valid for all otherP*. Consider again the Martingale property for an asset whose price is denoted

by S;, but this time reintroduce the day’s adjustment paramgtéropping the assumption that

t; represents years. We can write, for sdine 4,

1

St = (1 ¥ Tté) EtP[St'HS] (70)
Rearrange to obtain
(14 r,6) =EF [Sg‘;] (71)

According to this expression, under the probabilityexpected net annual returns &t liquid
assets will equat;, the risk-free rate observed at timhe

Similar results concerning the expected returns of the assets are obtained under other prob-
abilities P*. The expected returns will be different under different probabilities. Market practi-
tioners can select the working probability so as to set the expected return of the astedito
numbert®

In Chapter 13, we will see more complicated applications of this idea usingZfifoe~ard
measures. There, the expected change in the forward rates is set equal to zero by a judicious
choice of probabilities.

5.3.1. Martingales and Risk Premia

Let us see how the use of Martingales “internalizes” the risk premia associated with nondiver-
sifiable market risks. LeX;,t € [to, T] be a risky asset and > 0 be a small time interval.
The annualizedross returnof the X; as expected bglayersat timet, is defined by

Xiga
Xy

|+ Ry = EP { (72)

where P represents thesal-world probabilityused by market participants in setting up their
expectation. Since this is an actual market expectation, the gross return will contain a risk
premium:

Ry =1 + (73)

wherer; is the risk-free rate, ang, is therisk premiuncommanded by the risky asséPutting
these together, we have

(74)

X
(1 + TtA + ,LLtA) = EtP |: t+A:|

Xy

18 Consequently, the associated risk premium need not be estimated.

19 Underrational expectations, the subjective probabilis the same as the “true” distribution &f;.
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or

1

X =—
¢ (1+TtA+,U,tA)

EtP (XAl (75)

This equality states that the asset pricg, o discountedby the factor(1 + 7, A + pA) is a
Martingaleonly if we use the probability”. Note that in this setup there atwo unknowns:
(1) the risk premiumu,, and (2) the real-world probabilit{?.2° Future cash flows accordingly
need to be discounted by subjective discount factors and real-world probabilities need to be
estimated. The pricing problem under these conditions is more complex. Financial engineers
have to determine the value of the risk premium in addition to “projecting” future earnings or
cash flows.

Now consider an alternative. Setting the (positive) risk premium equal to zero in the previous
equation gives the inequality

1

X < —m—
(14 1A

Ef[Xiia] (76)

But this is the same as risk-free savings account normalization. This means that by switching
from P to P, we can restore the equality

1

mEtp [Xital (77)

Xt:

Thus, normalization and synthetic probabilities internalize the risk premia by converting both
unknowns into a known and objective probabiliRy Equation (77) can be exploited for pricing
and risk management.

Arbitrage-Free Dynamics

The last result that we derive from the fundamental theorem of asset pricing is a combination of
all the corollaries discussed thus far. The synthetic probabilities and the Martingale property that
we obtained earlier can be used to derive sewtatrage-free dynamic®r an asset price. These
arbitrage-free dynamics play an important role in pricing situations where an exact synthetic
cannot be created, either due to differences in nonlinearities, or due to a lack of liquid constituent
assets. Infact, most of the pricing models will proceed along the lines of first obtaining arbitrage-
free dynamics, and then either simulating paths from this or obtaining the implied binomial or
trinomial trees. PDE methods also use these arbitrage-free dynamics.

Arbitrage-Free SDEs

In this section we briefly discuss the use of stochastic differential equations as a tool in financial
engineering and then show how the fundamental theorem helps in specifying explicit SDEs that
can be used in pricing and hedging in pracfit€onsider an asset pricg. Suppose we divide

the time period{, 7] into small intervals of equal sizA. Foreachtimeé +iA, i =1, . . . ,n,

we observe a differemt; ;4. The S, A — S, is thechangein asset price at timé Choose a
working probability from all available synthetic probabilities, and denote iPby

20 Although this latter isestimableusing econometric methods.

21 Appendix 8-2 in Chapter 8 provided the definition and some motivation for SDEs.
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Then, we can always calculate the expected value of this change under this probability. In
the case ofP* = P, we obtain the risk-neutral expected net return by

EP[Siin — Si] = riSiA (78)
Next, note that the following statementabvaystrue:
Actual change in Sy = “Expected” change + “Unexpected” change (79)

Now we can use the probability switching method and exploit the Martingale property. For
example, for the risk-neutral probability we have

[Stea — Si) = Bl [Siva — Si) + (80)
where the:, represents a random variable with zero expectation undé? tReplace from (78)
[Sien — St =1 SiA + ¢ (81)
Now the error terng; can be written in the equivalent form
e = o(Sy) S AW, (82)

where theAWV; is a Wiener process increment with variance equal to
Thus, the arbitrage-free dynamics under theneasure can be written as

[St—i-A — Sf] = T’tStA + U(St)StAWt (83)

Letting A — 0, this equation becomes a stochastic differential equation (SDE), that represents
the arbitrage-free dynamics under the synthetic probabifityduring an infinitesimally short
perioddt. Symbolically, the SDE is written as

dSt = TtStdt + O'(St)Stth (84)

The dS, and dW, represent changes in the relevant variables duringnfinitesimal time
interval. Given the values for the (percentage) volatility parametgt; ), these equations can

be used to generate arbitrage-free trajectories fofihé/e deal with these in the next chapter.
Note a major advantage of using the risk-neutral probability. The drift term, that is to say the
first term on the right-hand side, is known. At this point we consider a second way of obtaining
arbitrage-free paths.

Tree Models

We will see another major application of the Martingale property. We develop the notion
of binomial (trinomial) trees introduced in Chapter 7 and obtain an alternative way of han-
dling arbitrage-free dynamics. Suppose the dynamics; @fan be described by a (geometric)
SDE:

dSt = rStdt + O'Stth (85)
where the volatility is assumed to be given by

o(Sy)=0o (86)
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This is the constarpercentagerolatility of S;. Also note that-, is set to a constant. It can be
shown that this stochastic differential equation can be “solvedSfdo obtain the relationship
(for example, see Pksendal (2003)).

St-i—A _ SterA7%U2A+U(Wt+A7Wt) (87)

Our purpose is to construct an approximation to the arbitrage-free dynamics ¢, thige

will do this by consideringapproximationgo possible paths théf; can follow betweert and

some “expiration” datd". This approximation will be such tha&t, will satisfy the Martingale
property under a judiciously chosen probability. Finally, the approximation should be chosen so
that asA — 0, the mean and the variance of the discrete approximation converge to those of
the continuous time process under the relevant probability. It turns out that this can be done in
manydifferent ways. Each method may have its advantages and disadvantages. We discuss two
different ways of building trees. AA — 0, the dynamics become those of continuous time.

6.2.1. Casel

The method introduced by Cox-Ross-Rubinstein (CRR) selects the following approximation.
First, the periodto, T is divided intoN subintervals of equal length. Then, it is assumed that
at each point of a path there are possible states. In the CRRrcaseand the paths become
binomial An alternative trinomial tree is shown in Figure 11-3.
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dd
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FIGURE 11-3
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e Atevery node of a possible path, there are only two possible states represented by the
numbers{u;, d;}, with the (marginal) probabilitiep and (1 — p). The dynamics are
selected as follows:

Stu = u,-S,-_A (88)
S¢ = d;iS; A (89)

wheresS; is the shortcut notation fa$; . ;a.
e The{u;,d;} are assumed to be constantatl.

We now show how to determine the Martingale probabilities. One approch is to find proba-
bilities such that undey, (1 — p):

S; = e "AEP[Si A (90)
or
Si=e "2 pS A + (1 - p) Syl (91)
Using the definition of5}, ,, S;i+A, in equations (88) and (89), we can write
S; = e " [pSiu + (1 — p)Sid (92)

The mean and the variance®funder this probability should also be as given by the postulated
dynamics of the continuous time process in the lifain other words, the should also satisfy

Ef[Sisal = lpu+ (1 - p)d]S; (93)
and
EP[S%a — Bl [Si1a)] = [pu? + (1 = p)d?] S? — EF[S;1a]? (94)
Use

EF[Siva] = Sie™ (95)
B[S} a = Bl [Sival?] = S278 (e — 1) (96)

and get the equations
e® = pu+ (1—-p)d (97)
ArATTA = pu? 4 (1 - p)d? (98)

The p, u, d that satisfy these two equations will (1) satisfy the Martingale equality foAall
(2) get arbitrarily close to the mean and the variance of the continuous time pf@ss goes
to zero, and (3) make the asymptotic distributiortphormal. However, there is one problem.
Note that here we have two equations and three unknowmk:andp. One more equation is
needed. Choose

u =

1
p (99)

22 Here the probability? is represented by the parameter
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This makes the tree recombine and completes the system of equations. Under these conditions,
the following values solve the equations

er® —d
_ 100
p=—— (100)
u=eVA (101)
d=e VA (102)

Any approximation here is in the sense that all terms containing higher ordararefignored?>
6.2.2. Case 2
The previous selection ¢f, u, d satisfies

S; = e A [pS;e”VA 4 (1 - p)Sie V2] (103)

It turns out thaip, u, d can be selected in other ways as well. In particular, note that during an
interval A, the S; moves to

Spsa = St A3 AtoWira-Wi] (104)
Using the approximation
L B i
we get new values fay, u, andd:
u = erd-oAto/(2) (106)
d = erd=30"8-01/(8) (107)
p=.5 (108)

These values will again satisfy the Martingale equality, the equality for the mean, and the variance
of the.S;, in the same approximate sense.

7. Which Pricing Method to Choose?

In general, the choice of a pricing method depends on the following factors:

e The accuracy of pricing methods does, in general, differ. Some methods are numeri-
cally more stable than others. Some methods yield coarser approximations than others.
Precision is an important factor.

e The speed of pricing methods also changes from one method to another. In general,
everything else being the same, the faster results are preferred.

e Some methods are easier to implement. The ease of understanding a pricing method is
an important factor in its selection by practitioners.

23 This is, in fact, a standard assumption used throughout calculus. We notice thatjaas to zero, the values of
p will converge to.
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e The parsimony associated with the model is also important. In general, we want our
pricing models to depend on as few parameters as possible. This way, the model has to
be calibrated to a smaller number of parameters, which means that fewer things can go
wrong. Also, a trader/broker can in general compensate for a parsimonious model by
adjusting the quotes based on trading experience.

However, in the end, the method chosen depends on the circumstances, and is a matter of
experience. What a book like this can do is to present a brief overview of the various approaches
available to the financial engineer.

8. Conclusions

We obtained some important results in this chapter. First, we showed that the notion of state
prices can be made practical in environments with liquid option prices at different strikes.
From here we showed how to obtain risk-neutral and forward measures and the corresponding
arbitrage-free dynamics.

Finally, as long as liquid option prices with different strikes exist, we showed how to replicate
an asset using a static portfolio of options. This is true for the following reasons:

1. Given the option prices, we can get the prices of elementary insurance contracts.

2. But we know that every asset can be synthetically created as a portfolio of elementary
insurance contracts.

3. This means that every asset can be created as a portfolio of liquid options.

Hence, option markets not only provide close relatives of elementary insurance contracts,
but also show us how to obtain generalized static synthetics for all assets in principle. Of course,
the practical application depends on the availability of liquid options.

Finally, we must emphasize that risk management and pricing are never as straightforward
in real life, since given the day, the number, and the type of liquid option, contracts change.

Suggested Reading

The treatment of the fundamental theorem of finance in this chapter has been heuristic and
introductory, although all important aspects of the theorem have been covered. The reader
can get more insight into the theorem by lookingatffie (2001), which offers an excellent
treatment of asset pricing. The article Byace et al.(1997) is an important milestone in the

use of Martingale theory, and places the right emphasis on pricing and the measure of change
that fits this chapteiClewlow and Strickland1998) provide several examples.
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APPENDIX 11-1: Simple Economics of the Fundamental Theorem

This appendix provides a justification for the fundamental theorem from standard microeco-
nomic theory. Consider the following setup. An investor faces a decision that involves two time
periods; the time of decision, afd the relevant future date. Aft, there are only two possible
states of the worldy?, i = 1, 2. The investor’s subjective probabilities for these atandp?,
respectively.

This investor’s preferences are described biilay functionU (X ), whereX; is total (real)
consumption at time. Essentially, this investor is better off the higher his or her consumption:

dU
—_— 109
0< ix, (109)

But, additional consumption would incrementally have less and less positive effect:

d*U
——5 <0 110
e (110)
This investor would like to maximize thexpected utilityassociated with his or her current and
future consumption:

EP[U(Xy) + BU(Xr)] = U(Xy) + B (p'U(X7) + p*U(X3)) (111)

wheref is a constant subjective discount factérjs the subjective personal probability, and
X1 and X% are the consumption levels in states 1 and 2 during pefiadspectively. The
maximization of this function is subject to the investor’s budget constraint at/temel on the
two states of the world at timé.

@G Xt + Sthy =1
g X+ =1+ h,Sk (112)

S, is a risky asset that can be purchased at tiniehas possible value$}. and 52 at timeT'.
Here thel is a known and constant income earned at titn@sd7'. Theg,, g3, andg? are the
corresponding prices of the consumption good. Note that, atTinthere are two prices, one
for each state. Finallyy, is the number of5; purchased by the investor at time

According to this, we are dealing with an investor who receives a constant income that needs
to be split between saving and consumption in a two-period setting. The investment can be made
only by buying a desired amount of ti$%g asset. The price of this asset is a random variable in
the model.

The investor is risk averse and maximizes the expected utility function. There are several
ways one can solve this maximization. Our intention is to show a simple exampietieate
the fundamental theorem of finance. Hence, we are not concerned with the optimal consumption
itself. Rather, we would like to obtain a relationship between “current” asset fyiead the
two possible values?. and 52 at timeT'. The fundamental theorem of asset pricing is about
these two sets of prices. Thus, we should be able to find out how the present framework can
generate the state pric€s of the fundamental theorem.
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Keeping these objectives in mind, we proceed by first substituting o th& 1., X2 from
the equations in (112), and then differentiating the resulting expression with respect to the only
remaining choice variablg;. The substitution gives

U+ 6 (U + ) - (T2 g (o (TR aay
t T

T 2
e (S
ar

Differentiating the right side with respect tg, equating to zero, and then rearranging,

_ 1 1
o (=) () o () () @29
T T
I+ h;S2\ [ S2
(S (F)
ar ar

where thel/’(.) is the derivative of thé/(x) with respect to .
Now comes the critical point. We can rearrange the first-order condition in equation (114)
to obtain

I+h,S}
U()
1 o) ar

U/(H-h;s%
Can St S Ja (115)
U/( Ot t) T

1
ST+p U/(I—Stht) q% T

Sy=0|p

qt qt

Now relabel as follows:

U’ ( 1+h1ts;)
1 1 dr qt
_ 4t 116
Q ﬂp U/(I*Stht> q% ( )
qt
and
U’ I+hS%
Q2 — 61)2(‘1%)% (117)

U’ (I_stht) q%

qt

It is clear that all elements of the right-side expressionspasdtiveand, as a result, th@?,
i = 1,2 are positive. Substituting thegg back in equation (115), we get

Sy = SrQ" + 52.Q? (118)

In other words, there islaear relationship between current asset pisgand the future possible
valuesSi. andS%, and{Q’} is the determining factor.

Aninteresting implication of the derivation shown here is the following. Even when the utility
function U(.) and the subjective probabilitieg differ among investors, general equilibrium
conditions would equate the marginal rates of substitution across these differing investors and
hence thg/ @'} would be thesame In other words, th¢@?} would be unique to all consumers
even when these consumers disagree on the expected future behavior of the economy.
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CHAPTER 11+ Pricing Tools in Financial Engineering

Exercises

1. The currenttime is = 1 and our framework is the Libor model. We consider a situation

with four states of the world); at timet = 3.

SupposeL; is the Libor process with a particular tenor aid1, 3), B(1,4), and
B(1,4) are zero-coupon bond prices with indicated maturities. gémsiblepayoffs of
these instruments in the four future states of the world are as follows:

L =6%, 6%, 4%, 4% (119)
B(1,3)=1,1,1,1 (120)
B(1,4)=0.9,0.92,0.95,0.96 (121)
B(1,5)=0.8,0.84,0.85,0.88 (122)

The current prices are, respectively,
1,0.91,0.86,0.77 (123)

Here the 1 is a dollar invested in Libor. It is like a savings account. Finally, current
Libor is 5%.

(a) Using Mathematica, determine a state price vegtogs, ¢3, g4, that corre-
sponds taB(1, 3), B(1,4), B(1,5), L as a basis.

(b) Doesg; satisfy the required condition of positivity? Is there an arbitrage
opportunity?

(c) LetF bethel x 2 FRArate. Can you determine its arbitrage-free value?

(d) Now letC be an ATM caplet (i.e., the strike is 5%) that expires at time 2,
but settled at tim¢ = 3 with notional amount 1. How much is it worth?

. Suppose you are given the following data. The risk-free interest rate is 4%. The stock

price follows:
dSt = /JSt + O'Stth (124)

The percentage annual volatility is 18% a year. The stock pays no dividends and the
current stock price is 100.

Using these data, you are asked to calculate the current value of a European call option
on the stock. The option has a strike price of 100 and a maturity of 200 days.

(a) Determine an appropriate time interval such that the binomial tree has five
steps.

(b) What would be the implied andd?

(c) What is the implied “up” probability?

(d) Determine the binomial tree for the stock prige

(e) Determine the tree for the call premiuti.

. Suppose the stock discussed in the previous exercise pays dividends. Assume all param-

eters are the same. Consider three forms of dividends paid by the firm:

(a) The stock pays a continuous, known stream of dividends at a rate of 4% per
time.

(b) The stock pays 5% of the value of the stock at the third node. No other divi-
dends are paid.
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(c) The stock pays a $5 dividend at the third node.
In each case, determine the tree for the ex-dividend stock price. For the first
two cases, determine the premium of the call.
In what way(s) will the third type of dividend payment complicate the
binomial tree?

4. We use binomial trees to value American-style options on the British pound. Assume that
the British pound is currently worth $1.40. Volatility is 20%. The current British risk-free
rate is 6% and the U.S. risk-free rate is 3%. The put option has a strike price of $1.50. It
expires in 200 days.

(a) Thefirstissue to be settled is the role of U.S. and British interest rates. This
option is being purchased in the United States, so the relevant risk-free rate is
3%. But British pounds can be used to earn the British risk-free rate. So this
variable can be treated as a continuous rate of dividends. Or we can say that
interest rate differentials are supposed to equal the expected appreciation of the
currency.

Taking this into account, determine’asuch that the binomial tree has five
periods.

(b) Determine the implied andd and the relevant probabilities.

(c) Determine the tree for the exchange rate.

(d) Determine the tree for a European put with the same characteristics.

(e) Determine the price of an American-style put with the previously stated
properties.

5. Barrier options belong to one of four main categories. They can be up-and-out, down-
and-out, up-and-in, or down-and-in. In each case, there is a specified “barrier,” and when
the underlying asset price down or up-crosses this barrier, the option either expires auto-
matically (the “out” case) or comes into life automatically (the “in” case).

Consider a European-style up-and-out call written on a stock with a current price of
100 and a volatility of 30%. The stock pays no dividends and follows a geometric price
process. The risk-free interest rate is 6% and the option matures in 200 days. The strike
price is 110. Finally, the barrier is 120. If the before-maturity stock price exceeds 120,
the option automatically expires.

(a) Determine the relevamtandd and the corresponding probability.

(b) Value a call with the same characteristics but without the barrier property.
(c) Value the up-and-out call.

(d) Which option is cheaper?



